5–1Motorola Small–Signal Transistors, FETs and Diodes Device Data
  
 
These Schottky barrier diodes are designed for high speed switching applications,
circuit protection, and voltage clamping. Extremely low forward voltage reduces
conduction loss. Miniature surface mount package is excellent for hand held and
portable applications where space is limited.
Extremely Fast Switching Speed
Low Forward Voltage — 0.35 Volts (Typ) @ IF = 10 mAdc
MAXIMUM RATINGS (TJ = 125°C unless otherwise noted)
Rating Symbol Value Unit
Reverse Voltage VR30 Volts
Forward Power Dissipation
@ TA = 25°C
Derate above 25°C
PF200
1.6 mW
mW/°C
Forward Current (DC) IF200 Max mA
Junction Temperature TJ125 Max °C
Storage Temperature Range Tstg 55 to +150 °C
DEVICE MARKING
BAT54SWT1 = B8
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (EACH DIODE)
Characteristic Symbol Min Typ Max Unit
Reverse Breakdown Voltage (IR = 10 µA) V(BR)R 30 Volts
Total Capacitance (VR = 1.0 V, f = 1.0 MHz) CT 7.6 10 pF
Reverse Leakage (VR = 25 V) IR0.5 2.0 µAdc
Forward Voltage (IF = 0.1 mAdc) VF 0.22 0.24 Vdc
Forward Voltage (IF = 30 mAdc) VF 0.41 0.5 Vdc
Forward Voltage (IF = 100 mAdc) VF 0.52 1.0 Vdc
Reverse Recovery Time
(IF = IR = 10 mAdc, IR(REC) = 1.0 mAdc) Figure 1 trr 5.0 ns
Forward Voltage (IF = 1.0 mAdc) VF 0.29 0.32 Vdc
Forward Voltage (IF = 10 mAdc) VF 0.35 0.40 Vdc
Forward Current (DC) IF 200 mAdc
Repetitive Peak Forward Current IFRM 300 mAdc
Non–Repetitive Peak Forward Current (t < 1.0 s) IFSM 600 mAdc
Preferred devices are Motorola recommended choices for future use and best overall value.
Thermal Clad is a registered trademark of the Bergquist Company.
Order this document
by BAT54SWT1/D

SEMICONDUCTOR TECHNICAL DATA

Motorola Preferred Device
30 VOLT
DUAL SERIES
SCHOTTKY BARRIER
DIODES
12
3
CASE 41902, STYLE 9
SOT–323 (SC70)
Motorola, Inc. 1997
3
CATHODE/ANODE
1
ANODE 2
CATHODE
REV 3
BAT54SWT1
5–2 Motorola Small–Signal Transistors, FETs and Diodes Device Data
Notes: 1. A 2.0 k variable resistor adjusted for a Forward Current (IF) of 10 mA.
Notes: 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
Notes: 3. tp » trr
+10 V 2 k
820
0.1
µ
F
DUT
VR
100
µ
H0.1
µ
F
50
OUTPUT
PULSE
GENERATOR
50
INPUT
SAMPLING
OSCILLOSCOPE
trtpt
10%
90%
IF
IR
trr t
iR(REC) = 1 mA
OUTPUT PULSE
(IF = IR = 10 mA; measured
at iR(REC) = 1 mA)
IF
INPUT SIGNAL
Figure 1. Recovery Time Equivalent Test Circuit
100
0.0 0.1
VF, FORWARD VOLTAGE (VOLTS)
0.2 0.3 0.4 0.5
10
1.0
0.1
85
°
C
10
0VR, REVERSE VOLT AGE (VOLTS)
1.0
0.1
0.01
0.001 510152025
14
0VR, REVERSE VOLT AGE (VOLTS)
12
4
2
0
CT, TOTAL CAPACITANCE (pF)
51015 30
I
F
, FORWARD CURRENT (mA)
Figure 2. Forward Voltage Figure 3. Leakage Current
Figure 4. Total Capacitance
–40
°
C
25
°
C
TA = 150
°
C
TA = 125
°
C
TA = 85
°
C
TA = 25
°
C
IR, REVERSE CURRENT (
µ
A)
0.6
–55
°
C
150
°
C
125
°
C
100
1000
30
2520
6
8
10
BAT54SWT1
5–3Motorola Small–Signal Transistors, FETs and Diodes Device Data
INFORMATION FOR USING THE SOT–323 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
mm
inches
0.035
0.9
0.075
0.7
1.9
0.028
0.65
0.025
0.65
0.025
SC–70/SOT–323 POWER DISSIPATION
The power dissipation of the SC–70/SOT–323 is a function
of the collector pad size. This can vary from the minimum
pad size for soldering to the pad size given for maximum
power dissipation. Power dissipation for a surface mount
device is determined by TJ(max), the maximum rated junction
temperature of the die, RθJA, the thermal resistance from the
device junction to ambient; and the operating temperature,
TA. Using the values provided on the data sheet, PD can be
calculated as follows.
PD = TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature T A of 25°C, one can
calculate the power dissipation of the device which in this
case is 200 milliwatts.
PD = 150°C – 25°C
625°C/W = 200 milliwatts
The 625°C/W assumes the use of the recommended
footprint on a glass epoxy printed circuit board to achieve a
power dissipation of 200 milliwatts. Another alternative would
be to use a ceramic substrate or an aluminum core board
such as Thermal Clad. Using a board material such as
Thermal Clad, a power dissipation of 300 milliwatts can be
achieved using the same footprint.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference should be a maximum of 10°C.
The soldering temperature and time should not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient should be 5°C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling
* Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.
BAT54SWT1
5–4 Motorola Small–Signal Transistors, FETs and Diodes Device Data
PACKAGE DIMENSIONS
CASE 419–02
ISSUE H
SOT–323 (SC–70)
CRN
AL
D
G
V
SB
H
J
K
3
12
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.071 0.087 1.80 2.20
B0.045 0.053 1.15 1.35
C0.035 0.049 0.90 1.25
D0.012 0.016 0.30 0.40
G0.047 0.055 1.20 1.40
H0.000 0.004 0.00 0.10
J0.004 0.010 0.10 0.25
K0.017 REF 0.425 REF
L0.026 BSC 0.650 BSC
N0.028 REF 0.700 REF
R0.031 0.039 0.80 1.00
S0.079 0.087 2.00 2.20
V0.012 0.016 0.30 0.40
0.05 (0.002) STYLE 9:
PIN 1. ANODE
2. CATHODE
3. CATHODE–ANODE
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Af firmative Action Employer . Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488
Mfax: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
INTERNET: http://motorola.com/sps
BAT54SWT1/D