IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 1 Rev. 2, Mar-04
HighSpeed 2-Technology
Designed for:
- SMPS
- Lamp Ballast
- ZVS-Converter
- optimised for soft-switching / resonant topologies
2nd generation HighSpeed-Technology
for 1200V applications offers:
- loss reduction in resonant circuits
- temperature stable behavior
- parallel switching capability
- tight parameter distribution
- Eoff optimized for IC =1A
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE I
C Eoff Tj Package Ordering Code
IGP01N120H2 1200V 1A 0.09mJ
150°C P-TO-220-3-1 Q67040-S4593
IGB01N120H2 1200V 1A 0.09mJ 150°C P-TO-263 (D2PAK) Q67040-S4592
IGD01N120H2 1200V 1A 0.09mJ 150°C P-TO-252 (DPAK) Q67040-S4591
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 1200 V
Triangular collector current
TC = 25°C, f = 140kHz
TC = 100°C, f = 140kHz
IC
3.2
1.3
Pulsed collector current, tp limited by Tjmax ICpuls 3.5
Turn off safe operating area
VCE 1200V, Tj 150°C
- 3.5
A
Gate-emitter voltage VGE ±20 V
Power dissipation
TC = 25°C
Ptot 28 W
Operating junction and storage temperature Tj , Tstg -40...+150
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
225 (for SMD)
°C
G
C
E
P-TO-220-3-1
(TO-220AB)
P-TO-263-3-2 (D²-PAK)
(TO-263AB) P-TO-252-3-1 (D-PAK)
(TO-252AA)
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 2 Rev. 2, Mar-04
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
RthJC 4.5
Thermal resistance,
junction – ambient
RthJA P-TO-220-3-1 62
SMD version, device on PCB1) RthJA P-TO-263 (D2PAK) 40
K/W
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=300µA 1200 - -
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=1A
Tj=25°C
Tj=150°C
VGE = 10V, IC=1A,
Tj=25°C
-
-
-
2.2
2.5
2.4
2.8
-
-
Gate-emitter threshold voltage VGE(th) IC=30µA,VCE=VGE 2.1 3 3.9
V
Zero gate voltage collector current
ICES VCE=1200V,VGE=0V
Tj=25°C
Tj=150°C
-
-
-
-
20
80
µA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 40 nA
Transconductance gfs VCE=20V, IC=1A - 0.75 - S
Dynamic Characteristic
Input capacitance Ciss - 91.6 -
Output capacitance Coss - 9.8 -
Reverse transfer capacitance Crss
VCE=25V,
VGE=0V,
f=1MHz - 3.4 -
pF
Gate charge QGate VCC=960V, IC=1A
VGE=15V
- 8.6 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE P-TO-220-3-1
P-TO-247-3-1
-
7
13
-
nH
1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for
collector connection. PCB is vertical without blown air.
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 3 Rev. 2, Mar-04
Swi tching Charact eristic, Inducti ve Load, at Tj=25 °C
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 13 -
Rise time tr - 6.3 -
Turn-off delay time td(off) - 370 -
Fall time tf - 28 -
ns
Turn-on energy Eon - 0.08 -
Turn-off energy Eoff - 0.06 -
Total switching energy Ets
Tj=25°C,
VCC=800V,
IC=1A,
VGE=15V/0V,
RG=241,
Lσ2)=180nH,
Cσ2)=40pF
Energy losses include
“tail” and diode 3)
reverse recovery.
- 0.14 -
mJ
Swi tching Charact eristic, Inducti ve Load, at Tj=150 °C
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 12 -
Rise time tr - 8.9 -
Turn-off delay time td(off) - 450 -
Fall time tf - 43 -
ns
Turn-on energy Eon - 0.11 -
Turn-off energy Eoff - 0.09 -
Total switching energy Ets
Tj=150°C
VCC=800V,
IC=1A,
VGE=15V/0V,
RG=241,
Lσ2)=180nH,
Cσ2)=40pF
Energy losses include
“tail” and diode 3)
reverse recovery.
- 0.2 -
mJ
Switching Energy ZVT, Inductive Load
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-off energy Eoff VCC=800V,
IC=1A,
VGE=15V/0V,
RG=241,
Cr
2)=1nF
Tj=25°C
Tj=150°C
-
-
0.02
0.044
-
-
mJ
2 ) Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E
3) Commutation diode from device IKP01N120H2
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 4 Rev. 2, Mar-04
IC, COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
1A
2A
3A
4A
5A
TC=110°C
TC=80°C
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
,01A
0,1A
1A
10A
200µs
DC
50µs
5µs
2µs
20µs
tp=1µs
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switchi ng frequency
(Tj 150°C, D = 0.5, VCE = 800V,
VGE = +15V/0V, RG = 241)
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj 150°C)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C 150°C
0W
5W
10W
15W
20W
25W
30W
IC, COLLECTOR CURRENT
25°C 50°C 75°C 100°C 125°C 150°C
0A
1A
2A
3A
4A
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj 150°C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 150°C)
Ic
Ic
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 5 Rev. 2, Mar-04
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
1A
2A
3A
4A
5A
12V
10V
8V
6V
VGE=15V
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V 6V
0A
1A
2A
3A
4A
5A
12V
10V
8V
6V
VGE=15V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
Figure 6. Typical output characteristics
(Tj = 150°C)
IC, COLLECTOR CURRENT
3V 5V 7V 9V
0A
1A
2A
3A
4A
5A
Tj=+150°C
Tj=+25°C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
IC=2A
IC=1A
IC=0.5A
VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(VCE = 20V)
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 6 Rev. 2, Mar-04
t, SWITCHING TIMES
0A 1A 2A
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
50100150200
1ns
10ns
100ns
tr
td(on)
tf
td(off)
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 241,
dynamic test circuit in Fig.E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 1A,
dynamic test circuit in Fig.E)
t, SWITCHING TIMES
0°C 50°C 100°C 150°C
10ns
100ns
tr
td(on)
tf
td(off)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
6V
typ.
min.
max.
Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 1A, RG = 241,
dynamic test circuit in Fig.E)
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.03mA)
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 7 Rev. 2, Mar-04
E, SWITCHING ENERGY LOSSES
0A 1A 2A 3A
0.0mJ
0.2mJ
0.4mJ
0.6mJ
Eon
1
Eoff
Ets
1
E, SWITCHING ENERGY LOSSES
50100150200
0.05mJ
0.10mJ
0.15mJ
0.20mJ
0.25mJ
Ets
1
Eon
1
Eoff
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 241,
dynamic test circuit in Fig.E )
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 1A,
dynamic test circuit in Fig.E )
E, SWITCHING ENERGY LOSSES
-40°C 25°C 100°C 150°C
0.00mJ
0.05mJ
0.10mJ
0.15mJ
0.20mJ
0.25mJ
Ets
1
Eon
1
Eoff
Eoff, TURN OFF SWITCHING ENERGY LOSS
0V/us 1000V/us 2000V/us 3000V/us
0.00mJ
0.02mJ
0.04mJ
0.06mJ
IC=0.3A, TJ=150°C
IC=0.3A, TJ=25°C
IC=1A, TJ=150°C
IC=1A, TJ=25°C
Tj, JUNCTION TEMPERATURE dv/dt, VOLTAGE SLOPE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 1A, RG = 241,
dynamic test circuit in Fig.E )
Figure 16. Typical turn off switching energy
loss for soft switching
(dynamic test circuit in Fig. E)
1
) Eon and Ets include losses
due to diode recovery.
1
) Eon and Ets include losses
due to diode recovery.
1
) Eon and Ets include losses
due to diode recover
y
.
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 8 Rev. 2, Mar-04
ZthJC, TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
100K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
VGE, GATE-EMITTER VOLTAGE
0nC 5nC 10nC 15nC
0V
5V
10V
15V
20V
UCE=240V
UCE=960V
tp, PULSE WIDTH QGE, GATE CHARGE
Figure 17. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
Figure 18. Typical gate charge
(IC = 1A)
C, CAPACITANCE
0V 10V 20V 30V
10pF
100pF
Crss
Coss
Ciss
VCE, COLLECTOR-EMITTER VOLTAGE
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0V
200V
400V
600V
800V
1000V
0.0A
0.2A
0.4A
0.6A
0.8A
1.0A
ICE COLLECTOR CURRENT
VCE, COLLECTOR-EMITTER VOLTAGE tp, PULSE WIDTH
Figure 19. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
Figure 20. Typical turn off behavior, hard
switching
(VGE=15/0V, RG=220, Tj = 150°C,
Dynamic test circuit in Figure E)
R,(K/W)
τ
, (s)
2.5069 0.00066
1.1603 0.00021
0.8327 0.00426
C1=
τ
1/R1
R1R2
C2=
τ
2/R2
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 9 Rev. 2, Mar-04
VCE, COLLECTOR-EMITTER VOLTAGE
0.0 0.4 0.8 1.2 1.6 2.0
0V
200V
400V
600V
800V
1000V
0.0A
0.2A
0.4A
0.6A
0.8A
1.0A
ICE COLLECTOR CURRENT
tp, PULSE WIDTH
Figure 21. Typical turn off behavior, soft
switching
(VGE=15/0V, RG=220, Tj = 150°C,
Dynamic test circuit in Figure E)
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 10 Rev. 2, Mar-04
dimensions
symbol [mm] [inch]
min max min max
A 9.70 10.30 0.3819 0.4055
B 14.88 15.95 0.5858 0.6280
C 0.65 0.86 0.0256 0.0339
D 3.55 3.89 0.1398 0.1531
E 2.60 3.00 0.1024 0.1181
F 6.00 6.80 0.2362 0.2677
G 13.00 14.00 0.5118 0.5512
H 4.35 4.75 0.1713 0.1870
K 0.38 0.65 0.0150 0.0256
L 0.95 1.32 0.0374 0.0520
M 2.54 typ. 0.1 typ.
N 4.30 4.50 0.1693 0.1772
P 1.17 1.40 0.0461 0.0551
T 2.30 2.72 0.0906 0.1071
TO-220AB
dimensions
symbol [mm] [inch]
min max min max
A 9.80 10.20 0.3858 0.4016
B 0.70 1.30 0.0276 0.0512
C 1.00 1.60 0.0394 0.0630
D 1.03 1.07 0.0406 0.0421
E 2.54 typ. 0.1 typ.
F 0.65 0.85 0.0256 0.0335
G 5.08 typ. 0.2 typ.
H 4.30 4.50 0.1693 0.1772
K 1.17 1.37 0.0461 0.0539
L 9.05 9.45 0.3563 0.3720
M 2.30 2.50 0.0906 0.0984
N 15 typ. 0.5906 typ.
P 0.00 0.20 0.0000 0.0079
Q 4.20 5.20 0.1654 0.2047
R 8° max 8° max
S 2.40 3.00 0.0945 0.1181
T 0.40 0.60 0.0157 0.0236
U 10.80 0.4252
V 1.15 0.0453
W 6.23 0.2453
X 4.60 0.1811
Y 9.40 0.3701
TO-263AB (D
2
Pak)
Z 16.15 0.6358
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 11 Rev. 2, Mar-04
dimensions
symbol [mm] symbol
min min
A 6.40 A 6.40 A
B 5.25 B 5.25 B
C (0.65) C (0.65) C
D 0.63 D 0.63 D
E 2.28 E
F 2.19 F 2.19 F
G 0.76 G 0.76 G
H 0.90 H 0.90 H
K 5.97 K 5.97 K
L 9.40 L 9.40 L
M 0.46 M 0.46 M
N 0.87 N 0.87 N
P 0.51 P 0.51 P
R 5.00 R 5.00 R
S 4.17 S 4.17 S
T 0.26 T 0.26 T
U - U - U
TO-252AA (DPak)
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 12 Rev. 2, Mar-04
Figure A. Definition of switching times
I
rrm
90% I
rrm
10% I
rrm
di /dt
F
t
rr
I
F
i,
v
t
Q
S
Q
F
t
S
t
F
V
R
di /dt
rr
Q=Q Q
rr S F
+
t=t t
rr S F
+
Figure C. Definition of diodes
switchi ng characteri stics
p(t)
12 n
T(t)
j
τ
1
1
τ
2
2
n
n
τ
T
C
rr
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ
= 180nH,
Stray capacitor Cσ = 40pF,
Relief capacitor Cr = 1nF (only for
ZVT switching)
Figure B. Definition of switching losses
öö
VDC
DUT
(Diode)
½Lσ
RGDUT
(IGBT)
L
½Lσ
CσCr
IGP01N120H2, IGB01N120H2
IGD01N120H2
Power Semiconductors 13 Rev. 2, Mar-04
Published by
Infineon Technologies AG i Gr.,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.