December 2005 / B http://takcheong.com
1
Licensed by ON Semiconductor,
A trademark of semiconductor
Components Industries, LLC for
Zener Technology and Products.
TAK CHEON
G
®
500 mW DO-35 Hermetically
Sealed Glass Zener Voltage
Regulators
Maximum Ratings (Note 1)
Rating Symbol Value Units
Maximum Steady State Power Dissipation
@TL75, Lead Length = 3/8”
Derate Above 75
PD
500
4.0
mW
mW/
Operating and Storage
Temperature Range TJ, Tstg -65 to +200 °C
Note 1: Some part number series have lower JEDEC registered ratings.
Specification Features:
Zener Voltage Range = 2.4V to 200V
ESD Rating of Clas 3 (>6 KV) per Human Body Model
DO-35 Package (DO-204AH)
Double Slug Type Construction
Metallurgical Bonded Construction
Specification Features:
Case : Double slug type, hermetically sealed glass
Finish : All external surfaces are corrosion resistant and leads are readily solderable
Polarity : Cathode indicated by polarity band
Mounting: Any
Maximum Lead Temperature for Soldering Purposes
230, 1/16” from the case for 10 seconds
Ordering Information
Device Package Quantity
BZX79Cxxx Axial Lead 3000 Units / Box
BZX79CxxxRL Axial Lead 5000 Units / Tape & Reel
BZX79CxxxRL2* Axial Lead 5000 Units / Tape & Reel
BZX79CxxxRR1 ! Lead Form 3000 Units / Radial Tape & Reel
BZX79CxxxRR2 i Lead Form 3000 Units / Radial Tape & Reel
BZX79CxxxTA Axial Lead 5000 Units / Tape & Ammo
BZX79CxxxTA2* Axial Lead 5000 Units / Tape & Ammo
BZX79CxxxRA1 ! Axial Lead 3000 Units / Radial Tape & Ammo
BZX79CxxxRA2 i Axial Lead 3000 Units / Radial Tape & Ammo
* The “2” suffix refer to 26mm tape spacing.
! “1”: Polarity band up with cathode lead off first.
i “2”: Polarity band down with cathode lead off first.
BZX79C2V4 through BZX79C200 Series
Cathode Anode
L = Logo
79Cxxx = BZX79Cxxx Device Code
L
79C
xxx
Devices listed in bold italic are Tak Cheong Preferred
devices. Preferred devices are recommended choices
for future use and best overall value.
AXIAL LEAD
DO35
http://takcheong.com
2
BZX79C2V4 through BZX79C200 Series
ELECTRICAL CHARACTERIZATION (TA = 25°C unless
otherwise noted, VF = 1.5V max @ IF = 100mA for all types)
Symbol Parameter
VZ Reverse Zener Voltage @ IZT
IZT Reverse Current
ZZT Maximum Zener Impedance @ IZT
θVBR Temperature Coefficient of VBR (Typical)
IR Reverse Leakage Current @ VR
VR Reverse Voltage
IF Forward Current
VF Forward Voltage @ IF
C Capacitance (Typical)
ELECTRICAL CHARACTERIZATION (TA = 25°C unless otherwise noted, VF = 1.5V max @ IF = 100mA for all types)
Leakage Current θVBR
VZ @ IZT
(Volts)
(Note 3.)
Max Zener
Impedance
(Note 4.)
IZT @ IZT IZT IR @ VR (mV/)
C
VZ =0,
F=1.0MHz
Device
(Note 2.)
Device
Marking Min Max (Ω) (mA) (uA) (Volts) Min Max (pF)
BZX79C2V4
BZX79C2V7
BZX79C3V0
BZX79C3V3
BZX79C3V6
79C2V4
79C2V7
79C3V0
79C3V3
79C3V6
2.2
2.5
2.8
3.1
3.4
2.6
2.9
3.2
3.5
3.8
100
100
95
95
90
5
5
5
5
5
100
75
50
25
15
1
1
1
1
1
-3.5
-3.5
-3.5
-3.5
-3.5
0
0
0
0
0
255
230
215
200
185
BZX79C3V9
BZX79C4V3
BZX79C4V7
BZX79C5V1
BZX79C5V6
79C3V9
79C4V3
79C4V7
79C5V1
79C5V6
3.7
4
4.4
4.8
5.2
4.1
4.6
5
5.4
6
90
90
80
60
40
5
5
5
5
5
10
5
3
2
1
1
1
2
2
2
-3.5
-3.5
-3.5
-2.7
-2
0.3
1
0.2
1.2
2.5
175
160
130
110
95
BZX79C6V2
BZX79C6V8
BZX79C7V5
BZX79C8V2
BZX79C9V1
79C6V2
79C6V8
79C7V5
79C8V2
79C9V1
5.8
6.4
7
7.7
8.5
6.6
7.2
7.9
8.7
9.6
10
15
15
15
15
5
5
5
5
5
3
2
1
0.7
0.5
4
4
5
5
6
0.4
1.2
2.5
3.2
3.8
3.7
4.5
5.3
6.2
7
90
85
80
75
70
BZX79C10
BZX79C11
BZX79C12
BZX79C13
BZX79C15
79C10
79C11
79C12
79C13
79C15
9.4
10.4
11.4
12.4
13.8
10.6
11.6
12.7
14.1
15.6
20
20
25
30
30
5
5
5
5
5
0.2
0.1
0.1
0.1
0.05
7
8
8
8
10.5
4.5
5.4
6
7
9.2
8
9
10
11
13
70
65
65
60
55
2. TOLERANCE AND VOLTAGE DESIGNATION
Tolerance designation – the type numbers listed have zener voltage min/max limits as shown.
3. REVERSE ZENER VOLTAGE (VZ)
Reverse zener voltage is measured under pulse conditions such at TJ is no more than 2 above TA.
4. ZENER IMPEDANCE (ZZ) DERIVATION
ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are
for IZ(AC) = 0.1 IZ(DC) with AC frequency = 60Hz.
V
I
VF
IF
VR I
R
VZ
IZT
Zener Voltage Regulator
BZX79C2V4 through BZX79C200 Series
http://www.takcheong.com
2
ELECTRICAL CHARACTERISTICS (TA = 25ºC unless
otherwise noted. VF = 1.5 V Max @ IF = 100mA for all types)
Symbol Parameter
VZReverse Zener Voltage @ IZT
IZT Reverse Zener Current
ZZT Maximum Zener Impedance @ IZT
θVBR Temperature Coeffic i ent of VBR (Typical)
IRReverse Leakage Current @ VR
VRReverse Voltage
IFForward Current
VFForward Voltage @ IF
C Capacitanc e (Typic al )
ELECTRICAL CHARACTERISTICS (TA = 25c unless otherwise noted, V F = 1.5 V Max @ IF = 100mA for all types)
Leakage Current θ
θθ
θVBR
VZ @ IZT
(Volts)
(Note 3.)
Max Zener
Impedance
(Note 4)
ZZT @ IZT IZT IR @ VR(mV/ºC)
C
VZ = 0,
F = 1.0MHz
Device
(Note 2.) Device
Marking Min Max (
)(mA)(
µ
µµ
µA) (Volts) Min Max (pF)
BZX79C2V4 79C2V4 2.2 2.6 100 5 100 1 -3.5 0 255
BZX79C2V7 79C2V7 2.5 2.9 100 5 75 1 -3.5 0 230
BZX79C3V0 79C3V0 2.8 3.2 95 5 50 1 -3.5 0 215
BZX79C3V3 79C3V3 3.1 3.5 95 5 25 1 -3.5 0 200
BZX7C3V6 7C3V6 3.4 3.8 90 5 15 1 -3.5 0 185
BZX79C3V9 79C3V9 3.7 4.1 90 5 10 1 -3.5 0.3 175
BZX79C4V3 79C4V3 4 4.6 90 5 5 1 -3.5 1 160
BZX79C4V7 79C4V7 4.4 5 80 5 3 2 -3.5 0.2 130
BZX79C5V1 79C5V1 4.8 5.4 60 5 2 2 -2.7 1.2 110
BZX79C5V6 79C5V6 5.2 6 40 5 1 2 -2 2.5 95
BZX79C6V2 79C6V2 5.8 6.6 10 5 3 4 0.4 3.7 90
BZX79C6V8 79C6V8 6.4 7.2 15 5 2 4 1.2 4.5 85
BZX79C7V5 79C7V5 7 7.9 15 5 1 5 2.5 5.3 8
BZX79C8V2 79C8V2 7.7 8.7 15 5 0.7 5 3.2 6.2 75
BZX79C9V1 79C9V1 8.5 9.6 15 5 0.5 6 3.8 7 70
BZX79C10 79C10 9.4 10.6 20 5 0.2 7 4.5 8 70
BZX79C11 79C11 10.4 11.6 20 5 0.1 8 5.4 9 65
BZX79C12 79C12 11.4 12.7 25 5 0.1 8 6 10 65
BZX79C13 79C13 12.4 14.1 30 5 0.1 8 7 11 60
BZX79C15 79C15 13.8 15.6 30 5 0.05 10.5 9.2 13 55
2. TOLERANCE AND VOLTAGE DESIGNATION
Tolerance designation – the type numbers listed have zener voltage min/max limits as shown.
3. REVE RSE ZENE R VOL T AGE (VZ)
Reverse zener voltage is measured under pulse conditions such that TJ is no more than 2ºC above TA.
4. ZENER IMPEDANCE (ZZ) DERIVATION
ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current appl i ed. The specified l imits
are for IZ(AC) = 0.1 IZ(DC) with AC frequenc y = 60Hz.
BZX79C2V4 through BZX79C200 Series
http://www.takcheong.com
3
ELECTRICAL CHARACTERISTICS (TA = 25c unless otherwise noted, V F = 1.5 V Max @ IF = 100mA for all types)
Leakage Current θ
θθ
θVBR
VZ @ IZT
(Volts)
(Note 3.)
Max Zener
Impedance
(Note 4)
ZZT @ IZT IZT IR @ VR(mV/ºC)
C
VZ = 0,
F = 1.0MHz
Device
(Note 2.) Device
Marking Min Max (
)(mA)(
µ
µµ
µA) (Volts) Min Max (pF)
BZX79C16 79C16 15.3 17.1 40 5 0.05 11.2 10.4 14 52
BZX79C18 79C18 16.8 19.1 45 5 0.05 12.6 12.9 16 47
BZX79C20 79C20 18.8 21.2 55 5 0.05 14 14.4 18 36
BZX79C22 79C22 20.8 23.3 55 5 0.05 15.4 16.4 20 34
BZX79C24 79C24 22.8 25.6 70 5 0.05 16.8 18.4 22 33
BZX79C27 79C27 25.1 28.9 80 2 0.05 18.9 23.5 30
BZX79C30 79C30 28 32 80 2 0.05 21 26 27
BZX79C33 79C33 31 35 80 2 0.05 23.1 29 25
BZX79C36 79C36 34 38 90 2 0.05 25.2 31 23
BZX79C39 79C39 37 41 130 2 0.05 27.3 34 21
BZX79C43 79C43 40 46 150 2 0.05 30.1 37 21
BZX79C47 79C47 44 50 170 2 0.05 32.9 40 19
BZX79C51 79C51 48 54 180 2 0.05 35.7 44 19
BZX79C56 79C56 52 60 200 2 0.05 39.2 47 18
BZX79C62 79C62 58 66 215 2 0.05 43.4 51 17
BZX79C68 79C68 64 72 240 2 0.05 47.6 56 17
BZX79C75 79C75 70 79 255 2 0.05 52.5 60 16.5
BZX79C82 79C82 77 87 280 2 0.1 62 46 95 29
BZX79C91 79C91 85 96 300 2 0.1 69 51 107 28
BZX79C100 79C100 94 106 500 1 0.1 76 57 119 27
BZX79C110 79C110 104 116 650 1 0.1 84 63 131 26
BZX79C120 79C120 114 127 800 1 0.1 91 69 144 24
BZX79C130 79C130 124 141 950 1 0.1 99 75 158 23
BZX79C150 79C150 138 156 1250 1 0.1 114 87 185 21
BZX79C160 79C160 153 171 1400 1 0.1 122 93 200 20
BZX79C180 79C180 168 191 1700 1 0.1 137 105 228 18
BZX79C200 79C200 188 212 2000 1 0.1 152 120 255 17
2. TOLERANCE AND VOLTAGE DESIGNATION
Tolerance designation – the type numbers listed have zener voltage min/max limits as shown.
3. REVE RSE ZENE R VOL T AGE (VZ)
Reverse zener voltage is measured under pulse conditions such that TJ is no more than 2ºC above TA.
4. ZENER IMPEDANCE (ZZ) DERIVATION
ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current appl i ed. The specified l imits
are for IZ(AC) = 0.1 IZ(DC) with AC frequenc y = 60Hz.
BZX79C2V4 through BZX79C200 Series
http://www.takcheong.com
4
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0 20 40 60 80 100 120 140 160 180 200
TL, LEAD TEMPERATURE (°C)
Figure 1. Steady State Power Derating
HEAT
SINKS
3/8" 3/8"
PD, MAXIMUM STEADY STATE
POWER DISSIPATION (WATTS)
BZX79C2V4 through BZX79C200 Series
http://www.takcheong.com
5
APPLICATION NOTE - ZENER VOLTAGE
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to determine
junction temperature under any set of operating conditions
in order to calculate its value. The following procedure is
recommended:
Lead Temperature, TL, should be determined from:
TL = θLAPD + TA.
θLA is the lead-to-ambient thermal resistance (°C/W) and PD
is the power dissipation. The value for θLA will vary and
depends o n the device mounting method. θLA is generally 30
to 40°C/W for the various clips and tie points in common use
and for printed circuit board wiring.
The temperature of the lead can also be measured using a
thermocouple placed on the lead as close as possible to the
tie point. The thermal mass connected to the tie point is
normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result of
pulsed operation once steady-state conditions are achieved.
Using the measured value of TL, the junction temperature
may be determined by:
TJ = TL + TJL.
TJL is the increase in junction temperature above the lead
temperature and may be found from Figure 2 for dc power:
TJL = θJLPD.
For worst-case design, using expected limits of IZ, limits
of PD and the extremes of TJ(TJ) may be estimated.
Changes in voltage, VZ, can then be found from:
V = θVZTJ.
θVZ, the zener voltage temperature coefficient, is found
from Figures 4 and 5.
Under high power -pulse operation, the zener voltage will
vary with time and may also be affected significantly by the
zener resistance. For best regulation, keep current
excursions as low as possible.
Surge limitations are given in Figure 7. They are lower
than would be expected by considering only junction
temperature, a s current crowding ef fects cause temperatures
to be extremely high in small spots, resulting in device
degradation should the limits of Figure 7 be exceeded.
LL
500
400
300
200
100
0
0 0.2 0.4 0.6 0.8 1
2.4-60 V
62-200V
L , LEAD LENGTH TO HEAT SINK (INCH)
JL, JUNCTION TOLEAD THERMAL RESISTANCE(°C/W)θ
Figure 2. Typical Thermal Resistance
TYPICAL LEAKAGE CURRENT
AT 80% OF NOMINAL
BREAKDOWN VOLTAGE
+2C
+12C
1000
7000
5000
2000
1000
700
500
200
100
70
50
20
10
7
5
2
1
0.7
0.5
0.2
0.1
0.07
0.05
0.02
0.01
0.007
0.005
0.002
0.001
34 5 6 7 8 9101112
VZ , NOMINAL ZENER VOLTAGE (VOLTS)
I, LEAKAGE CURRENT ( A)µR
Figure 3. Typical Leakage Current
13 14 15
BZX79C2V4 through BZX79C200 Series
http://www.takcheong.com
6
+12
+10
+8
+6
+4
+2
0
-2
-4
89
VZ , ZENER VOLTAGE (VOLTS)
Figure 4a. Range for Units to 12 Volts
VZ@IZT
(NOTE 2)
RANGE
TEMPERATURE COEFFICIENTS
(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)
100
70
50
30
20
10
7
5
3
2
1
26 10 20 30 50 70 100
VZ , ZENER VOLTAGE (VOLTS)
Figure 4b. Range for Units 12 to 100 Volts
RANGE VZ@IZ(NOTE 2)
120 130 140 150 160 170 180 190 200
200
180
160
140
120
100
VZ , ZENER VOLTAGE (VOLTS)
Figure 4c. Range for Units 120 to 200 Volts
VZ @ IZT
(NOTE 2)
+6
+4
+2
0
-2
-4
34
VZ , ZENER VOLTAGE (VOLTS)
Figure 5. Effect of Zener Current
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOL TS
NOTE: CHANGES IN ZENER CURRENT DO NOT
NOTE: AFFECT TEMPERATURE COEFFICIENTS
1mA
0.01mA
VZ @ IZ
TA=25 °C
1000
C, CAP ACIT ANCE (pF)
500
200
100
50
20
10
5
2
1
1 2 5 10 20 50 100
VZ, ZENER VOLTAGE (VOLTS)
Figure 6a. Typical Capacitance 2.4-100 Volts
TA = 25°C
0V BIAS
1V BIAS
50% OF
VZBIAS
100
70
50
30
20
10
7
5
3
2
1
120 140 160 180 190 200 220
VZ, ZENER VOLTAGE (VOLTS)
Figure 6b. Typical Capacitance 120-200 Volts
T= 25 °C
1 VOLT BIAS
50% OF V BIAS
0 BIAS
θVZ
,
TEMPERA TURE COEFFICIENT (mV/ °C)
20mA
C, CAP ACIT ANCE (pF) θVZ
,
TEMPERATURE COEFFICIENT (mV/ °C)θVZ
,
TEMPERATURE COEFFICIENT (mV/°C)
θVZ, TEMPERA TURE COEFFICIENT (mV/°C)
345 710
11 12
5678
BZX79C2V4 through BZX79C200 Series
http://www.takcheong.com
7
100
70
50
30
20
10
7
5
3
2
1
0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000
Ppk , PEAK SURGE POWER (WATTS)
PW, PULSE WIDTH (ms)
5% DUTY CYCLE
10% DUTY CYCLE
20% DUTY CYCLE
11V-91V NONREPETITIVE
1.8V-10V NONREPETITIVE
RECT ANGULAR
WAVEFORM
TJ= 25°C PRIOR TO
INITIAL PULSE
Figure 7a. Maximum Surge Power 1.8-91 Volts
1000
700
500
300
200
100
70
50
30
20
10
7
5
3
2
1
0.01 0.1 1 10 100 1000
Ppk , PEAK SURGE POWER (WATTS)
PW, PULSE WIDTH (ms)
Figure 7b. Maximum Surge Power DO-35
100-200Volts
1000
500
200
100
50
20
10
1
2
5
0.1 0.2 0.5 1 2 5 10 20 50 100
IZ , ZENER CURRENT (mA)
Figure 8. Effect of Zener Current on
Zener Impedance
ZZ, DYNAMIC IMPEDANCE (OHMS)
ZZ, DYNAMIC IMPEDANCE (OHMS)
1000
700
500
200
100
70
50
20
10
7
5
2
1
1 2 3 5 7 10 20 30 50 70 100
VZ, ZENER VOLTAGE (VOLTS)
Figure 9. Effect of Zener Voltage on Zener Impedance Figure 10. T ypical Forward Characteristics
RECT ANGULAR
WAVEFORM, TJ = 25°C
100-200VOLTS NONREPETITIVE
TJ= 25°C
iZ (rms) = 0.1 IZ (dc)
f = 60Hz
IZ=1mA
5mA
20mA
TJ= 25°C
iZ(rms)=0.1 Iz(dc)
f = 60 Hz
VZ = 2.7V
47V
27V
6.2V
VF, FOR WARD VOLTAGE (VOLTS)
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
1000
500
200
100
50
20
10
5
2
1
IF, FOR WARD CURRENT (mA)
MINIMUM
MAXIMUM
150 °C
75°C
0°C
25°C
BZX79C2V4 through BZX79C200 Series
http://www.takcheong.com
8
Figure 1 1. Zener Voltage versus Zener Current - VZ = 1 thru 16 Volts
VZ, ZENER VOLTAGE (VOLTS)
IZ, ZENER CURRENT (mA)
20
10
1
0.1
0.01
12 5 78910111213141516
TA= 25°C
Figure 12. Zener Voltage versus Zener Current - VZ = 15 thru 30 Volts
VZ , ZENER VOLTAGE (VOLTS)
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10
1
0.1
0.01
TA= 25°C
IZ, ZENER CURRENT (mA)
6
34
BZX79C2V4 through BZX79C200 Series
http://www.takcheong.com
9
Figure 13. Zener Voltage versus Zener Current - VZ = 30 thru 105 Volts
VZ , ZENER VOLTAGE (VOLTS)
10
1
0.1
0.01
30 35 40 45 50 55 60 70 75 80 85 90 95 100
Figure 14. Zener Voltage versus Zener Current - VZ = 110 thru 220 Volts
VZ, ZENER VOLTAGE (VOLTS)
110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260
10
1
0.1
0.01
TA= 25°
65 105
IZ, ZENER CURRENT (mA)IZ, ZENER CURRENT (mA)