SENTRON
Fuse Systems
siemens.com/lowvoltage
Configu-
ration
Manual
Edition
10/2015
© Siemens AG 2016
© Siemens AG 2016
Siemens · 10/2015
For further technical
product information:
Siemens Industry Online Support:
www.siemens.com/lowvoltage/product-
support
Entry type:
Application example
Certificate
Characteristic
Download
FAQ
Manual
Product note
Software archive
Technical data
2Introduction
NEOZED fuse systems
8NEOZED fuse links
15 DIAZED fuse systems
Cylindrical fuse systems
24 Cylindrical fuse links and cylindrical
fuse holders
32 Fuse holders in size
10 x 38 mm and Class CC
36 Class CC fuse systems
40 Busbar systems
3NA, 3ND LV HRC fuse systems
45 LV HRC fuse links
68 LV HRC signal detectors
69 LV HRC fuse bases and accessories
SITOR seimconductor fuses
78 LV HRC design
147 Cylindrical fuse design
168 NEOZED and DIAZED design
172 Configuration
Photovoltaic fuses
186 Introduction
186 PV cylindrical fuses
191 PV cumulative fuses
Fuse Systems
© Siemens AG 2016
2Siemens · 10/2015
Introduction
Fuse Systems
Overview
Devices Page Application Standards Used in
Non-residential
buildings
Residential
buildings
Industry
NEOZED fuse systems 8MINIZED switch disconnectors, bases,
fuse links from 2 A to 63 A of opera-
tional class gG and accessories.
Everything you need for a complete
system.
Fuse system:
IEC 60269-3;
DIN VDE 0636-3
Safety switching
devices
IEC/EN 60947-3
DIN VDE 0638;
DIN EN 60947-3
(VDE 0660-107)
DIAZED fuse systems 15 Fuse links from 2 A to 100 A in various
operational classes, base versions with
classic screw base connections.
A widely used fuse system.
IEC 60269-3;
DIN VDE 0635;
DIN VDE 0636-3;
CEE 16
Cylindrical fuse systems
Cylindrical fuse links and cylindrical
fuse holders
24 Line protection or protection of
switching devices.
The fuse holders with touch protection
ensure the safe "no-voltage"
replacement of fuse links.
Auxiliary switches can be retrofitted.
IEC 60269-1, -2, -3;
NF C 60-200;
NF C 63-210, -211;
NBN C 63269-2,
CEI 32-4, -12
Fuse holders:
File No. E171267
Fuse holders in size 10 x 38 mm and
Class CC
32 For installing fused loaded motor starter
combinations.
IEC 60269-1, -2;
IEC 60947-4;
UL 4248-1,
File No. E171267
CSA 250269, 6225-01
Auxiliary switches:
UL 508,
File No. E334003
--
Class CC fuse systems 36 These comply with American standard
and have UL and CSA approval, for
customers exporting OEM products
and mechanical engineers.
Modern design with touch protection
according to BGV A3 for use in "branch
circuit protection".
Fuse holders:
UL 4248-1, E171267
CSA 22.2
Fuse links:
UL 248-4,
File No. E258218,
CSA 231237, 1422-02
and 1422-82
Busbar systems 40 Busbars for NEOZED fuse bases,
NEOZED fuse disconnectors, MINIZED
switch disconnectors, DIAZED fuse
systems and for the cylindrical fuse
systems.
Compact cylindrical fuse holders for
busbars.
DIN EN 60439-1
(VDE 0660-500)
UL 4248-1, E337131
© Siemens AG 2016
3
Siemens · 10/2015
Fuse Systems
Introduction
Devices Page Application Standards Used in
Non-residen-
tial buildings
Residential
buildings
Industry
3NA, 3ND LV HRC fuse systems
LV HRC fuse links 45 Fuse links from 2 A to 1250 A for
selective line protection and system
protection in non-residential buildings,
industry and power utilities.
IEC 60269-1, -2;
EN 60269-1;
DIN VDE 0636-2;
CSA 16325 - 1422-02
LV HRC signal detectors 68 Signal detectors for when a fuse is
tripped on all LV HRC fuse links with
combination or front indicators with
non-insulated grip lugs.
Plus the comprehensive accessory
range required for LV HRC fuse
systems.
--
LV HRC fuse bases and
accessories
69 Fuse bases for screw or snap-on
mounting onto standard mounting rails,
available as 1-pole or 3-pole version.
IEC 60269-1, -2;
EN 60269-1;
DIN VDE 0636-2
UL 4248-1,
File No. E171267-IZLT2
(only downstream from
branch circuit protec-
tion)
CSA C22.2
No. 4248.1-07
SITOR semiconductor fuses
LV HRC design 78 Fuse links in LV HRC design and a
huge variety of models support a wide
range of applications from 500 V to
1500 V and 150 A to 1600 A.
Fuses with slotted blade contacts,
bolt-on links or female thread, and
special designs.
UL 4248-13, File No.
E167357-JFHR2
-- --
Cylindrical fuse design 147 Fuse links, fuse holders – usable as
fuse switch disconnectors and fuse
bases up to 600/690 V AC and
400/700 V DC from 1 A to 100 A
in the sizes 10 × 38 mm, 14 × 51 mm
and 22 × 58 mm.
Fuse links:
UL 4248-13, File No.
E167357-JFHR2
CSA 248170, 1422-30
Fuse holders:
UL 4248-1, File No.
E171267- IZLT
CSA 248170, 6225-01
-- --
NEOZED and DIAZED design 168 NEOZED fuse links for 400 V AC and
250 V DC and DIAZED for 500 V AC
and 500 V DC.
-- -- --
Photovoltaic fuses
PV cylindrical fuses 186 Fuses with a rated voltage of
1000 V DC and operational class gPV
for the protection of photovoltaic
modules, their connecting cables
and other components.
IEC 60269-6
PV cumulative fuses 191 Fuses with a rated voltage of 1000 V
and 1500 V DC, a rated current of 63 A
to 630 A and operational class gPV for
the protection of connecting cables and
other components.
IEC60269-6
© Siemens AG 2016
4Siemens · 10/2015
Introduction
Fuse Systems
Overview
Rated voltage Un
The rated voltage is the designated voltage of the fuse and is
used to determine its test conditions and operational voltage
limits.
For LV HRC and SITOR fuse links, the rated voltage is always the
rms value of an AC voltage.
For wind power plants and some industrial applications, a higher
voltage tolerance is demanded of the LV HRC and SITOR fuses
than the tolerance of +5 % defined in the standard. On request,
you can obtain a manufacturer's declaration for the rated voltage
of 690 V +10 %.
In the case of NEOZED and DIAZED fuse links, a distinction is
made between AC and DC voltage values.
Rated current In
The rated current of a fuse link is the designated current of the
fuse link and is the current up to which it can be continuously
loaded under prescribed conditions without adverse affects.
Rated frequency
The rated frequency is the frequency for which the fuse link
is rated with regard to power dissipation, current, voltage,
characteristic curve and breaking capacity.
Selectivity
Several fuses are usually connected in series in a system. Selec-
tivity ensures that only the faulty electric circuit and not all oper-
ating processes are interrupted in a system in serious cases.
Siemens fuses of operational class gG, at an operational voltage
of up to 400 V AC and a ratio of 1:1.25, are interselective, i.e.
from rated current level to rated current level. This is achieved by
means of the considerably smaller band of scatter of ± 5 % of
the time/current characteristics, which far exceeds the demand
for a ratio of 1:1.6 specified in the standard.
It is therefore possible to use smaller conductor cross-sections
due to the lower rated currents.
Breaking capacity
The rated breaking capacity is the highest prospective short-
circuit current Ip that the fuse link can blow under prescribed
conditions.
A key feature of these fuses is their high rated breaking capacity
with the smallest footprint. The basic demands and circuit data
for tests – voltage, power factor, actuating angle, etc. – are
specified in both national (DIN VDE 0636) and international
(IEC 60269) regulations.
However, for a constant fail-safe breaking capacity, from the
smallest non-permissible overload current through to the highest
short-circuit current, a number of quality characteristics need to
be taken into account when designing and manufacturing fuse
links. These include the design of the fuse element with regard
to dimensions and punch dimension and its position in the
fuse body, as well as its compressive strength and the thermal
resistance of the body. The chemical purity, particle size and
the density of the quartz sand also play a key role.
The rated breaking capacity for AC voltage for NEOZED fuses
and the majority of DIAZED fuses – is 50 kA, and in the case of
our LV HRC fuses (NH type), it is even 120 kA. The various type
ranges of SITOR semiconductor fuses have different switching
capacities ranging from 50 to 100 kA.
.
Faster arcing and precise arc quenching are the requirements for a
reliable breaking capacity.
Operational classes
Fuses are categorized according to function and operational
classes. The first letter defines the function class and the second
the object to be protected:
1st letter
a = Partial range protection
(accompanied fuses):
Fuse links that carry currents at least up to their specified rated
current and can switch currents above a specific multiple of their
rated current up to their rated breaking current.
g = Full range protection
(general purpose fuses):
Fuse links that can continuously carry currents up to at least their
specified rated current and can switch currents from the small-
est melting current through to the breaking current. Overload
and short-circuit protection.
2nd letter
G = Cable and line protection
(general applications)
M = Switching device protection in motor circuits
(for protection of motor circuits)
R, S = Semiconductor protection/thyristor protection
(for protection of rectifiers)
L = Cable and line protection
(in acc. with the old, no longer valid DIN VDE)
B = Mine equipment protection
Tr = Transformer protection
The designations "slow" and "quick" still apply to DIAZED fuses.
These are defined in IEC/CEE/DIN VDE.
In the case of "quick" characteristics, the fuse blows in the break-
ing range faster than those of operational class gG.
In the case of DIAZED fuse links for DC railway network protec-
tion, the "slow" characteristic is particularly suitable for switching
off direct currents with greater inductance. Both characteristics
are also suitable for the protection of cables and lines.
Full range fuses (gG, gR, quick, slow) reliably break the
current in the event of non-permissible overload and short-
circuit currents.
Partial range fuses (aM, aR) exclusively serve short-circuit
protection.
© Siemens AG 2016
5
Siemens · 10/2015
Fuse Systems
Introduction
The following operational classes are included in the product
range:
gG (DIN VDE/IEC) = Full-range cable and line protection
aM (DIN VDE/IEC) = Partial-range switching device
protection
aR (DIN VDE/IEC) = Partial-range semiconductor protection
gR (DIN VDE/IEC) = Full-range semiconductor protection
gS (DIN VDE/IEC) = Full-range semiconductor protection
and cable and line protection
quick (DIN VDE/IEC/CEE) = Full-range cable and
line protection
slow (DIN VDE) = Full range cable and line protection
Characteristic curves (time/current characteristic curves)
The time/current characteristic curve specifies the virtual time
(e.g. the melting time) as a function of the prospective current
under specific operating conditions.
Melting times of fuse links are presented in the time/current
diagrams with logarithmic subdivision as a function of their cur-
rents. The melting time characteristic curve extends from the
lowest melting current, which still just causes the melting con-
ductor to melt asymptotically to the I2t line of equal Joulean heat
values in the range of higher short-circuit currents, which speci-
fies the constant melting heat value I2t. For the sake of simplicity,
the time/current characteristics diagrams omit the I2t lines (c).
General representation of the time/current characteristic curve of a fuse
link of operational class gL/gG
Imin: Smallest melting current
a: Melting time/current characteristic
b: Breaking time characteristic curve
c: I2t line
The curve of the characteristic depends on the outward heat
transfer from the fuse element. DIN VDE 0636 specifies toler-
ance-dependent time/current ranges within which the character-
istic curves of the fuse must lie. Deviations of ± 10 % are permis-
sible in the direction of the current axis. With Siemens LV HRC
fuse links of operational class gG, the deviations work out at
less than ± 5 %, a mark of our outstanding production accuracy.
For currents up to approx. 20 In, the melting time/current charac-
teristic curves are the same as the breaking time characteristic
curves. In the case of higher short-circuit currents, the two
characteristic curves move apart, influenced by the respective
arc quenching time.
The difference between both lines (= arc quenching time) also
depends on the power factor, the operational voltage and the
breaking current.
The Siemens characteristic curves show the mean virtual melt-
ing time characteristic curves recorded at an ambient tempera-
ture of (20 ± 5) °C. They do not apply to preloaded fuse links.
Virtual time tv
The virtual time is the time span calculated when an I2t value is
divided by the square of the prospective current:
The time/current characteristic curve specifies the prospective
current Ip and the virtual melting time tvs.
Prospective short-circuit current Ip
The prospective short-circuit current is the rms value of the
line-frequency AC component, or the value of direct current to
be expected in the event of a short-circuit occurring downstream
of the fuse, were the fuse to be replaced by a component of
negligible impedance.
Let-through current characteristic curves
The let-through current characteristic curve specifies the value
of the let-through current at 50 Hz as a function of the prospec-
tive current.
The let-through current Ic is the maximum instantaneous value
of the current reached during a switching operation of a fuse.
The fuse element of the fuse links melts so quickly at very high
currents that the surge short-circuit current Ip is prevented from
occurring. The highest instantaneous value of the current
reached during the breaking cycle is called the let-through
current Ic. The current limits are specified in the current limiting
diagrams, otherwise known as let-through current diagrams.
Oscillograph of a short-circuit current breaking operation through
a fuse link
I201_06996a
10 10 10 10 [A]
10
10
10
[s]
a
b
c
min
9
5
1
1234
t
tv
i2
dt
Ip
2
------------=
I201_06997b
P
c
sL
U
t
tt
t
c: Maximum let-through current
ts: Pre-arcing time
tL: Arcing time
P: Peak short-circuit current
Us: Arc voltage
© Siemens AG 2016
6Siemens · 10/2015
Introduction
Fuse Systems
Current limiting
As well as a fail-safe rated breaking capacity, the current-limiting
effect of a fuse link is of key importance for the cost effectiveness
of a system. In the event of short-circuit breaking by a fuse, the
short-circuit current continues to flow through the network until
the fuse link is switched off. However, the short-circuit current
is only limited by the system impedance.
The simultaneous melting of all the bottlenecks of a fuse element
produce a sequence of tiny partial arcs that ensure a fast break-
ing operation with strong current limiting. The current limitation is
also strongly influenced by the production quality of the fuse –
which in the case of Siemens fuses is extremely high. For exam-
ple, an LV HRC fuse link, size 2 (224 A) limits a short-circuit cur-
rent with a possible rms value of approximately 50 kA to a let-
through current with a peak value of approx. 18 kA. This strong
current limitation provides constant protection for the system
against excessive loads.
Current limiting diagram
Let-through current diagram of LV HRC fuse links, size 00
Operational class gL/gG
Rated currents 6 A, 10 A, 50 A, 100 A
Legend
tvs = Virtual melting time
Ic= Max. let-through current
Irms=rms value of the prospective short-circuit current
I2ts= Melting I2t value
I2ta=Breaking I2t value
In= Rated current
Pv= Rated power dissipation
= Temperature rise
kA= Correction factor for I2t value
Uw= Recovery voltage
Ûs= Peak arc voltage
Ip= Peak short-circuit current
$= Peak short-circuit current with largest DC component
%= Peak short-circuit current without DC component
U=Voltage
i=Current
ts= Melting time
tL= Arc quenching time
Rated power dissipation
Rated power dissipation is the power loss during the load of
a fuse link with its rated current under prescribed conditions.
The cost effectiveness of a fuse depends largely on the rated
power dissipation (power loss). This should be as low as possi-
ble and have low self-heating. However, when assessing the
power loss of a fuse, it must also be taken into account that there
is a physical dependence between the rated breaking capacity
and the rated power dissipation. On the one hand, fuse elements
need to be very thick in order to achieve the lowest possible
resistance value, on the other, a high rated breaking capacity
requires the thinnest possible fuse elements in order to achieve
reliable arc quenching.
Siemens fuses have the lowest possible rated power dissi-
pation while also providing the highest possible load breaking
reliability.
These values lie far below the limit values specified in the r
egulations. This means a low temperature rise, reliable breaking
capacity and high cost effectiveness.
I2t value
The I2t value (joule integral) is the integral of the current squared
over a specific time interval:
Specifies the I2t values for the melting process (I2ts) and for
the breaking cycle ((I2tA, , – sum of melting and quenching
I2t value). The melting I2t value, also known as the total I2t value
or breaking I2t value, is particularly important when dimension-
ing SITOR semiconductor fuses. This value depends on the
voltage and is specified with the rated voltage.
Peak arc voltage Ûs
The peak arc voltage is the maximum value of the voltage
that occurs at the connections of the fuse link during the arc
quenching time.
Residual value factor RV
The residual value factor is a reduction factor for determining the
permissible load period of the fuse link with currents that exceed
the permissible load current In (see rated current In). This factor
is applied when dimensioning SITOR semiconductor fuses.
Varying load factor VL
The varying load factor is a reduction factor for the rated current
with varying load states. This factor is applied when dimension-
ing SITOR semiconductor fuses.
Recovery voltage Uw
The recovery voltage (rms value) is the voltage that occurs at the
connections of a fuse link after the power is cut off.
I201_06998a
100 A
50 A
10 A
6 A
c
eff
I2ti
2td
t0
t1
=
© Siemens AG 2016
7
Siemens · 10/2015
Fuse Systems
Introduction
More information
Load capability with increased ambient temperature
The time/current characteristic curve of the NEOZED/DIAZED
and LV HRC fuse links is based on an ambient temperature of
20 °C ± 5 °C in accordance with DIN VDE 0636. When used in
higher ambient temperatures (see diagram) a reduced load-car-
rying capacity must be planned for. At an ambient temperature
of 50 °C, for example, an LV HRC fuse link should be dimen-
sioned for only 90 % of the rated current. While the short-circuit
behavior is not influenced by an increased ambient temperature,
it is influenced by overload and operation at rated value.
Influence of the ambient temperature on the load capability of
NEOZED/DIAZED and LV HRC fuses of operational class gG with
natural convection in the distribution board.
Assignment of cable and line protection
When gG fuses are assigned for cable and line protection
against overloading, the following conditions must be met in
order to comply with DIN VDE 0100 Part 430:
(1) IB = In = Iz (rated current rule)
(2) I2 = 1.45 × Iz (tripping rule)
IB: Operational current of electrical circuit
In: Rated current of selected protective device
Iz: Permissible current carrying capacity of the cable or line
under specified operating conditions
I2: Tripping current of the protective device under specified
operating conditions ("high test current").
These days, the factor 1.45 has become an internationally
accepted compromise of the protection and utilization ratio of a
line, taking into account the breaking response of the protective
device (e.g. fuse).
In compliance with the supplementary requirements for
DIN VDE 0636, Siemens fuse links of operational class gG
comply with the following condition:
"Load breaking switching with I2=1.45 × In during conventional
test duration under special test conditions in accordance with
the aforementioned supplementary requirements of
DIN VDE 0636".
This therefore permits direct assignment.
20
40
100
120
0
60
80
90
5020 40 60 80 100 1200
I201_06648c
Ambient temperature [°C]
Current carrying capacity [%]
© Siemens AG 2016
8Siemens · 10/2015
NEOZED fuse links
Fuse Systems
NEOZED Fuse Systems
Overview
The NEOZED fuse system is primarily used in distribution tech-
nology and industrial switchgear assemblies. The system is easy
to use and is also approved for domestic installation.
The MINIZED switch disconnectors are primarily used in switch-
gear assemblies and control engineering. They are approved for
switching loads as well as for safe switching in the event of short
circuits. The MINIZED D02 is also suitable for use upstream of
the meter in household applications in compliance with the
recommendations of VDEW according to TAB 2007.
Due to its compact design, the MINIZED D01 fuse switch
disconnector is primarily used in control engineering.
The NEOZED fuse bases are the most cost-effective solution for
using NEOZED fuses. All NEOZED bases must be fed from the
bottom to ensure that the threaded ring is insulated during re-
moval of the fuse link. The terminals of the NEOZED bases are
available in different versions and designs to support the various
installation methods.
Fuse bases D01 with terminal version BB
Incoming feeders, clamp-type terminal B
Outgoing feeders, clamp-type terminal B
Fuse bases D02, with terminal version SS
Incoming feeders, saddle terminal S
Outgoing feeders, saddle terminal S
Fuse bases D02, with terminal version KS
Incoming feeders, screw head contact K
Outgoing feeders, saddle terminal S
© Siemens AG 2016
9
Siemens · 10/2015
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links
Technical specifications
1) Degree of protection IP20 is tested according to regulations using a
straight test finger (from the front), with the device mounted and equipped
with a cover, housing or some other enclosure.
NEOZED fuse links
5SE2
Standards IEC 60269-3; DIN VDE 0636-3
Operational class gG
Rated voltage UnVAC 400
VDC 250
Rated current InA2...100
Rated breaking capacity kA AC 50
kA DC 8
Non-interchangeability Using adapter sleeves
Resistance to climate °C Up to 45 at 95 % rel. humidity
Ambient temperature °C -5 to +40, humidity 90 % at 20
MINIZED
switch dis-
connectors
MINIZED fuse
switch discon-
nectors
Fuse bases,
made of ceramic
Comfort
bases
Fuse bases
D02
5SG71
D01
5SG76
D01
5SG15
5SG55
D02
5SG16
5SG56
D03
5SG18
D01/02
5SG1.01
5SG5.01
5SG1.30
5SG1.31
5SG5.30
Standards DIN VDE 0638;
EN 60947-3
(VDE 0660-107)
IEC 60269-3; DIN VDE 0636-3
IEC/EN 60947-3
Main switch characteristic,
EN 60204-1
Yes -- --
Insulation characteristic
EN 60664-1
Yes -- --
Rated voltage UnVAC 230/400, 240/415 400
•1P VDC 65 48 250
2P in series V DC 130 110 250
Rated current InA63 16 16 63 100 16/63 16/63
Rated insulation voltage VAC 500 400 --
Rated impulse withstand voltage KV AC 62.5 --
Overvoltage category IV IV --
Utilization category acc. to VDE 0638
•AC-22 A 63 16 --
Utilization category acc. to EN 60947-3
•AC-22A A -- 16 --
•AC-22B A 63 -- --
•AC-23B A 35 -- --
DC-22 B A 63 -- --
Sealable
When switched on
Yes Yes, with sealable screw caps
Mounting position Any, preferably vertical
Reduction factor of In with 18 pole
Side-by-side mounting 0.9 --
On top of one another, with vertical standard
mounting rail
0.87 --
Degree of protection acc. to IEC 60529 IP20, with connected conductors1)
Terminals
With touch protection acc. to BGV A3
Yes No Ye s
Ambient temperature °C -5 to +40, humidity 90 % at 20
Terminal versions -- -- BK, S K/S -- --
Conductor cross-sections
Solid and stranded mm21.5 ... 35 1.5 ... 16 1.5 ... 4 1.5 ... 25 10 ... 50 0.75 ... 35 1.5 ... 35
Flexible, with end sleeve mm21.5 ... 35 1.5 1.5 1.5 10 -- --
Finely stranded, with end sleeve mm2-- -- 0.75 ... 25 -- -- -- --
Tightening torque Nm 2.5 ... 3 2.5 1.2 23.5/2.5 3.5 3
© Siemens AG 2016
10 Siemens · 10/2015
NEOZED fuse links
Fuse Systems
NEOZED Fuse Systems
Dimensional drawings
5SG71.3 MINIZED D02 switch disconnectors, with draw-out technology
Locking cap for MINIZED D02 switch disconnectors
5SG76 MINIZED D01 fuse switch disconnectors, with draw-out technology
Fuse bases with touch protection BGV A3 (VBG4), molded plastic
1P 1P+N 2P 3P 3P+N
2
1
4
3
54
2
1
4
3
81
6
5
2
1
4
3
108
6
5
N
N
70
44
45
5
90
I2_12122
81
27
79
70
4455
5
90
45
I201_17072
246
135
1P 1P+N, 2P 3P 3P+N
I201_07988a
18 36 54 72 644
64 107
45
88
70
Sizes D01/D02, with combined terminal, can be busbar mounted With cover
5SG1301,
5SG1701
5SG5301,
5SG5701
5SG1330,
5SG1331,
5SG5330,
5SG5730
5SG1730,
5SG1731
83
45
64
446,2
I2_12123
I201_07536b
71,5
58,7
45
26,6 79,8 4
44
47,2
59,2
Protective
caps
© Siemens AG 2016
11
Siemens · 10/2015
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links
NEOZED fuse bases made of ceramic
NEOZED covers made of molded plastic
Sizes D01/D02/D03
5SG15 5SG55
Type Version Size Connection
type
Dimensions
a b c d e g
Not sealed/
sealed
h i k
Snap-on with cover
5SG1553 1-pole D01 BB 26.8 36 40 56 70 23/26.5 54 -- --
5SG1653 D02 SS 26.8 36 41 56 70 23/26.5 59 -- --
5SG1693 D02 KS 26.8 36 41 56 70 23/26.5 60 -- --
5SG5553 3-pole D01 BB 80.8 36 40 56 70 23/26.5 54 -- --
5SG5653 D02 SS 80.8 36 41 56 70 23/26.5 59 -- --
5SG5693 D02 KS 80.8 36 41 56 70 23/26.5 60 -- --
Snap-on without cover
5SG1595 1-pole D01 BB 26.8 36 40 56 70 23/26.5 54 -- --
5SG1655 D02 SS 26.8 36 41 56 70 23/26.5 59 -- --
5SG1695 D02 KS 26.8 36 41 56 70 23/26.5 60 -- --
5SG1812 D03 KS 44.9 50 44 54.5 76 44 86 -- --
5SG5555 3-pole D01 BB 80.8 36 40 56 70 23/26.5 54 -- --
5SG5655 D02 SS 80.8 36 41 56 70 23/26.5 59 -- --
5SG5695 D02 KS 80.8 36 41 56 70 23/26.5 60 -- --
Screw-on without cover
5SG1590 1-pole D01 BB 26.8 36 40 56 70 23/26.5 54 20 22
5SG1650 D02 SS 26.8 36 41 56 70 23/26.5 59 20 22
5SG1810 D03 KS 44.9 50 46 54.5 76 44 86 32 32
5SG5550 3-pole D01 BB 80.8 36 40 56 70 23/26.5 54 74 22
5SG5650 D02 SS 80.8 36 41 56 70 23/26.5 59 74 22
5SG5690 D02 KS 80.8 36 41 56 70 23/26.5 60 74 22
Legend
Connection type:
K = Screw head contact
B = Clamp-type terminal
S = Saddle terminal
BB = Clamp-type terminal at incoming feeder
Clamp-type terminal at outgoing feeder
SS = Saddle terminal at incoming feeder
Saddle terminal at outgoing feeder
KS = Screw head contact at incoming feeder
Saddle terminal at outgoing feeder
NEOZED covers for NEOZED fuse bases, made of molded plastic
5SH5244 (A1) 5SH5245 (A2)
NEOZED covers for NEOZED fuse bases, made of ceramic
5SH5251 (A4) and 5SH5253 (A10) 5SH5252 (A5) and 5SH5254 (A11) 5SH5233 (A6)
a
ie
c
d
b
h
g
k
I201_06258b
screw cap
touch
protection
cover
I201_06206
45
21
1227
70
I201_06209
45
21
12
81
70
18
I201_06207
60
45
45
13
© Siemens AG 2016
12 Siemens · 10/2015
NEOZED fuse links
Fuse Systems
NEOZED Fuse Systems
NEOZED screw caps
NEOZED fuse links
Circuit diagrams
Graphical symbols
5SG71.3 MINIZED D02 switch disconnectors, with draw-out technology
5SG76 MINIZED D01 fuse switch disconnectors, with draw-out technology
NEOZED fuse bases/fuses in general
5SH4 Type Size Sealable For mounting
depth
Dimensions
a b
5SH4116 D01 -- 70 27.5 24
5SH4163 D02 -- 70 27.5 24
5SH4316 D01 70 33 26.5
5SH4363 D02 76 33 26.5
5SH4100 D03 -- 70 37 44
5SH4317 D01 -- 70 29.5 25
5SH4362 D02 -- 70 30.5 25
a
b
Size/thread Rated current in A Dimension
d2min
Dimension
d3
Dimension
d4max
Dimension
h
D01/E14 2...16 9.8 11 636
D02/E18 20 ... 63 13.8 15.3 10 36
D03/M30 80 ... 100 20.8 22.5 36 43
Size
n
A
D01/E14 2 ... 16
D02/E18 20 ... 63
D03/M30 80 ... 100
5SG7113 5SG7153 5SG7123 5SG7133
5SG7133-8BA25
5SG7133-8BA35
5SG7133-8BA50
5SG7163
1P 1P+N 2P 3P 3P+N
2
1
N
N
2
1
2
1
2
1
4
3
2
1
4
3
6
5
2
1
4
3
6
5
N
N
5SG7610 5SG7650 5SG7620 5SG7630 5SG7660
1P 1P+N 2P 3P 3P+N
1
2
1
2
N
N
1
2
3
4
1
2
3
4
5
6
1
2
3
4
5
6
N
N
5SG1 5SG5
1P 3P
© Siemens AG 2016
13
Siemens · 10/2015
Fuse Systems
NEOZED Fuse Systems
NEOZED fuse links
Characteristic curves
Series 5SE2
Sizes: D01, D02, D03
Operational class: gG
Rated voltage: 400 V AC/250 V DC
Rated current: 2 ... 100 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
Tabl e see page 14.
p[A]
[s]
I201_10887
46810
124
6810
2246810
32
4
6
10-2
2
4
6
2
4
6
100
2
4
6
101
10-1
2
4
6
2
4
6
103
2
4
6
104
102
2
4
2 A
4 A
6 A
10 A
13 A
16 A
20 A
25 A
32 A
35 A
50 A
40 A
63 A
80 A
100 A
vs
1 0 1264 1 0 2
8264 8 2 64
4
6
1 0
2
4
6
1 0
c
e f f
[ A ]
[ A ]
I 2 _ 1 0 8 8 8
2
4
6
1 0
2
2 4
2
3
4
1 0 381 0 46 8 1 0 52 4
12
4 A
2 A
1 0 0 A
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
3 2 A
2 5 A
2 0 A
1 6 A
1 3 A
1 0 A
6 A
2 6 1 01 0 4
0264 1 0 1
8 2 64 1 0 2
83
8 2 6 1 04 4
8
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
I 2 _ 1 0 8 8 9
0
1
2
3
4
5
6
e f f
[ A ]
2s
[ A s ]
2
6
4
1 0 0s
1 0 - 1 s 1 0 - 2 s1 0 - 3 s1 0 - 4 s
8 0 A
6 3 A
5 0 A
4 0 A
3 5 A
2 5 A
2 0 A
1 6 A
1 3 A
1 0 A
6 A
4 A
2 A
3 2 A
1 0 0 A
© Siemens AG 2016
14 Siemens · 10/2015
NEOZED fuse links
Fuse Systems
NEOZED Fuse Systems
Series 5SE2
Sizes: D01, D02, D03
Operational class: gG
Rated voltage: 400 V AC/250 V DC
Rated current: 2 ... 100 A
Type InPv I2tsI2ta
1ms 4ms 230 V AC 400 V AC
(t<4ms)
A W K A2s A2s A2s A2s
5SE2302 21.6 19 1.2 1.4 2.9 3.9
5SE2304 41.3 14 12.5 13.6 22 30
5SE2306 61.7 19 46.7 48 58 75
5SE2310 10 1.3 16 120 136 220 280
5SE2013-2A 13 2.0 23 220 244 290 370
5SE2316 16 2.1 24 375 410 675 890
5SE2320 20 2.4 26 740 810 1250 1650
5SE2325 25 3.2 33 1210 1300 1900 2600
5SE2332 32 3.6 34 2560 2800 4300 5500
5SE2335 35 3.8 36 3060 3500 5100 6500
5SE2340 40 4.0 37 4320 4800 7900 9500
5SE2350 50 4.2 38 6750 7400 10500 13000
5SE2363 63 5.3 45 10000 10900 16000 20500
5SE2280 80 5.3 43 13000 15400 25000 34500
5SE2300 100 6.4 47 22100 30000 46000 60000
© Siemens AG 2016
15
Siemens · 10/2015
Fuse Systems
DIAZED fuse systems
Overview
The DIAZED fuse system is one of the oldest fuse systems in
the world. It was developed by Siemens as far back as 1906.
It is still the standard fuse system in many countries to this day.
It is particularly widely used in the harsh environments of indus-
trial applications.
The series is available with rated voltages from 500 V to 750 V.
All DIAZED bases must be fed from the bottom to ensure an
insulated threaded ring when the fuse link is being removed.
Reliable contact of the fuse links is only ensured when used
together with DIAZED screw adapters.
The terminals of the DIAZED bases are available in different ver-
sions and designs to support the various installation methods.
The high-performing EZR bus-mounting system for screw fixing
is an outstanding feature. The busbars, which are particularly
suited for bus-mounting bases, have a load capacity of up to
150 A with lateral infeed.
DIAZED stands for Diametral gestuftes zweiteiliges Sicherungs-
system mit Edisongewinde (diametral two-step fuse system with
Edison screw).
Benefits
DIII fuse bases with terminal version BS
Outgoing feeders (top), saddle terminal S
Incoming feeders (bottom), clamp-type terminal B
DIII fuse bases with terminal version BB
Outgoing feeders (top), clamp-type terminal B
Incoming feeders (bottom), clamp-type terminal B
NDZ fuse bases with terminal version KK
Outgoing feeders (top), screw head contact K
Incoming feeders (bottom), screw head contact K
DIII fuse bases with terminal version SS
Outgoing feeders (top), saddle terminal S
Incoming feeders (bottom), saddle terminal S
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5 9
610
711
8
DIAZED cap for fuse bases
DIAZED collar for fuse bases
DIAZED fuse bases
DIAZED cover for fuse bases
DIAZED screw adapter
DIAZED fuse link
DIAZED screw cap
DIAZED fuse base (with touch protection BGV A3)
i201_18300
© Siemens AG 2016
16 Siemens · 10/2015
DIAZED fuse systems
Fuse Systems
Technical specifications
1) Degree of protection IP20 is tested according to regulations using a
straight test finger (from the front), with the device mounted and equipped
with a cover, housing or some other enclosure.
5SA, 5SB, 5SC, 5SD
Standards IEC 60269-3; DIN VDE 0635; DIN VDE 0636-3; CEE 16
Operational class Acc. to IEC 60269;
DIN VDE 0636
gG
Characteristic Acc. to DIN VDE 0635 Slow and quick
Rated voltage UnV AC 500, 690, 750
V DC 500, 600, 750
Rated current InA2...100
Rated breaking capacity kA AC 50, 40 at E16
kA DC 8, 1.6 at E16
Overvoltage category III
II (DIAZED fuse bases made of molded plastic for use at 690 V AC / 600 V DC)
Mounting position Any, preferably vertical
Non-interchangeabil-
ity
Using screw adapter or adapter sleeves
Degree of protection Acc. to IEC 60529 IP20, with connected conductors1)
Resistance to climate °C Up to 45, at 95 % rel. humidity
Ambient temperature °C -5 to +40, humidity 90 % at 20
Terminal version
B K S R
Size DII DIII NDz DII DIII DIII DIV DII DIII
Conductor cross-sections
Rigid, min. mm21.5 2.5 1.0 1.5 2.5 2.5 10 1.5 1.5
Rigid, max. mm210 25 610 25 25 50 35 35
Flexible, with end sleeve mm210 25 610 25 25 50 35 35
Tightening torque
Screw M4 Nm 1.2 --
Screw M5 Nm 2.0 --
Screw M6 Nm 2.5 3.0
Screw M8 Nm 3.5 --
© Siemens AG 2016
17
Siemens · 10/2015
Fuse Systems
DIAZED fuse systems
Dimensional drawings
DIAZED fuse links
5SA1, 5SA2 Size/thread TNDz/E16, NDz/E16
Rated current in A 24610 16 20 25
Dimension d 666810 12 14
49
I201_06251a
13,2
d
5SB1, 5SB2 Size/thread DII/E27
Rated current in A 24610 16 20 25
Dimension d 666810 12 14
I201_06247
d
49
22,5
5SB3, 5SB4 Size/thread DIII/E33
Rated current in A 32 35 50 63
Dimension d 16 16 18 20
49
I201_06248
d
28
5SC1, 5SC2 Size/thread DIV/R1¼"
Rated current in A 80 100
Dimension d 5 7
34,5
57
d
I201_06682
5SD6, 5SD8 Size/thread DIII/E33
Rated current in A 24610 16 20 25 35 50 63
Dimension d 6 6 6 8 10 12 14 16 18 20
70
I201_06329a
ød
ø28
© Siemens AG 2016
18 Siemens · 10/2015
DIAZED fuse systems
Fuse Systems
DIAZED fuse bases made of ceramic
DIAZED fuse bases made of molded plastic
5SF1
Version Connection
type
Dimensions
Type a b c d e g h i
NDz/25 A
5SF1012 KK 29 49 44.6 55 75 32 49 --
DII/25 A
5SF1005 BB 38.4 41 46.6 53 83 34 63 --
5SF1024 BB 38.4 41 46.6 53 83 34 63 4.3
DIII/63 A
5SF1205 BS 45.5 46 47 54 83 43 78 --
5SF1215 SS 45.5 46 47 54 83 43 78 --
5SF1224 BS 45.5 46 47 54 83 43 78 4.3
DIV/100 A
5SF1401 Flat terminal 68 68 -- 79 110 65 116 6.5
I201_06242
a
b
h
Øi
c
g
d
e
5SF4230
80
max.113
12
5
105
50
65
M6
I2_06443a
5SF1, 5SF5 Type Dimensions
a b
5SF1060 40 --
5SF1260 50 --
5SF5068 -- 120
5SF5268 -- 150
I201_11344
ab43,6
6
80
© Siemens AG 2016
19
Siemens · 10/2015
Fuse Systems
DIAZED fuse systems
DIAZED EZR bus-mounting bases
DIAZED screw caps/cover rings made of molded plastic/ceramic
DIAZED caps made of molded plastic
5SF6005 5SF6205
41,5
45
18
11
14
max.83
31
16
27
max.38,5
30
20,5 31
5
I2_06444a
34
max.49
3722
5,3
34
51,5
55
18
11
14 max.83
31
I2_06445a
16
Screw caps Cover rings Screw caps Cover rings
5SH1 5SH3 Size/thread Type Dimensions Type Dimensions
ab a b
NDz/E16 5SH1112 36 24
DII/E27 5SH1221 42 33 5SH3401 17.5 39.5
5SH112 45.5 34 5SH332 17.5 41.5
5SH122 43 39
DIII/E33 5SH1231 42 40 5SH3411 17.5 49.5
5SH113 45.5 43 5SH334 19 51.5
5SH123 47 45
5SH1161 48 48
5SH1170 68 43
a
I201_06257
b
I201_13741a
b
a
5SH2 Size/thread Type Dimensions
amax bmax cmax dmax
NDz/E16 5SH201 33 68 51.7 75
DII/E27 5SH202 43 74.7 53.6 83
DIII/E33 5SH222 51 90.5 53.6 83
I201_06242
a
b
h
Øi
c
g
d
e
© Siemens AG 2016
20 Siemens · 10/2015
DIAZED fuse systems
Fuse Systems
Characteristic curves
Series 5SA2
Size: E16
Characteristics: Slow
Rated voltage: 500 V AC/500 V DC
Rated current: 2 ... 25 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2100
10-3
2
4
6
10-2
6410
1
82 64102
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06069c
6103
8
2 A
vs
[A]
[s]
4 A 6 A 10 A 20 A
16 A 25 A
ef
ef
10226410
3
8
2
4
6
2
4
6
10
I2_07032b
5
2 A
c
[A]
[A]
102
6
103
2
4
6
10 4
26410
4
826410
5
824
4 A
6 A
10 A
16 A
20 A
25 A
12
Type InPv I2ts
1ms 4ms
A W K A2s A2s
5SA211 20.85 15 1.2 2.3
5SA221 41.3 17 8.5 13
5SA231 61.9 14 40 80
5SA251 10 1.4 17 200 190
5SA261 16 2.4 30 290 550
5SA271 20 2.6 36 470 1990
5SA281 25 3.4 34 1000 2090
Type I2ta
230 V AC 320 V AC 500 V AC
A2s A2s A2s
5SA211 6.6 7.8 0.7
5SA221 22 26 34
5SA231 66 76 100
5SA251 240 270 340
5SA261 890 950 1090
5SA271 1200 1350 1620
5SA281 2400 2600 3450
261010 4
026410
1
82 6410
2
83
82 61044
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_07545c
0
1
2
3
4
5
6
25 A
20 A
16 A
2 A
[A]
2s[A s]
2
100s10-1
s10-2s10-3
s10-4
s
4 A
6 A
10 A
ef
© Siemens AG 2016
21
Siemens · 10/2015
Fuse Systems
DIAZED fuse systems
Series 5SB2, 5SB4, 5SC2
Size: DII, DIII, DIV
Operational class: gG
Rated voltage: 500 V AC/500 V DC
Rated current: 2 ... 100 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2100
10-3
2
4
6
10-2
6410
1
82 64102
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
6103
8
vs
[A]
[s]
2
I2_07551a
2 A
4 A
6 A
10 A
16 A
20 A
25 A
32 A
35 A
50 A
63 A
80 A
100 A
ef
10226410
3
8
2
4
6
2
4
6
10
I2_06055b
5
2 A
c
[A]
[A]
102
6
103
2
4
6
104
26410
4
826410
5
824
4 A
6 A
10 A
16 A
20 A
25 A
32 A
50 A
63 A
80 A
100 A
12
35 A
ef
Type InPv I2ts
1ms 4ms
A W K A2s A2s
5SB211 2 2.6 15 3.7 3.9
5SB221 4 2.0 13 15 16
5SB231 6 2.2 14 42 45
5SB251 10 1.6 20 120 140
5SB261 16 2.4 23 500 580
5SB271 20 2.6 26 750 1100
5SB281 25 3.4 38 1600 2000
5SB4010 32 3.6 23 2300 2500
5SB411 35 3.7 25 3450 3000
5SB421 50 5.7 41 6500 5200
5SB431 63 6.9 48 11000 12000
5SC211 80 7.5 33 14600 16400
5SC221 100 8.8 46 28600 30000
Type I2ta
230 V AC 320 V AC 500 V AC
A2s A2s A2s
5SB211 6.6 8.8 10.7
5SB221 22 28 34
5SB231 66 85 100
5SB251 240 300 340
5SB261 890 1060 1090
5SB271 1200 1450 1620
5SB281 2400 3150 3450
5SB4010 3450 4150 4850
5SB411 5200 6200 7200
5SB421 9750 12350 14500
5SB431 16500 22200 26500
5SC211 23000 28500 32500
5SC221 44000 56000 65000
261010 4
026410
1
82 6410
2
83
82 61044
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_07552a
0
1
2
3
4
5
6
25 A
20 A
16 A
2 A
[A]
2s[A s]
2
4 A
6 A
10 A
100 A
80 A
63 A
50 A
35 A
100
s
10-1
s10-2
s10-3
s10-4
s
32 A
ef
© Siemens AG 2016
22 Siemens · 10/2015
DIAZED fuse systems
Fuse Systems
Series 5SD8
Size: DIII
Operational class: gG
Rated voltage: 690 V AC/600 V DC
Rated current: 2 ... 63 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2100
10-3
2
4
6
10-2
6410
1
82 64102
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06412c
6103
8
vs
[A]
[s]
4 A 10 A 20 A 30 A 63 A
2 A 6 A 16 A 25 A 50 A
ef
ef
10226410
3
8
2
4
6
I2_07101a
2 A
c
[A]
[A]
10
26410
4
826410
5
824
4 A
6 A
10 A
16 A
20 A
25 A
2
103
6
2
4
104
6
2
63 A
50 A
35 A
12
Type InPvI2tsI2ta
4ms 242 V AC
A W A2s A2s
5SD8002 2 1 4.4 7
5SD8004 41.2 40 62
5SD8006 61.6 88 140
5SD8010 10 1.4 240 380
5SD8016 16 1.8 380 600
5SD8020 20 2750 1200
5SD8025 25 2.3 2000 3200
5SD8035 35 3.1 3300 5100
5SD8050 50 4.6 7000 11000
5SD8063 63 5.5 9500 15000
261010 4
026410
1
82 6410
2
83
82 61044
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06425b
0
1
2
3
4
5
6
2 A
[A]
2s[A s]
2
100s10-1
s10-2s10-3
s10-4
s
25 A
20 A
16 A
4 A
6 A
10 A
35 A
50 A
63 A
ef
© Siemens AG 2016
23
Siemens · 10/2015
Fuse Systems
DIAZED fuse systems
Series 5SD6
Size: DIII
Operational class: Quick (railway network protection)
Rated voltage: 750 V AC/750 V DC
Rated current: 2 ... 63 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
21 0
0
1 0
- 3
2
4
6
1 0
- 2
64 1 0
1
8 2 64 1 0
2
8 2 4
2
4
6
1 0
- 1
2
4
6
1 0
0
2
4
6
1 0
1
2
4
6
1 0
2
2
4
6
1 0
3
2
4
6
1 0
4
I 2 _ 0 6 0 4 8 a
61 0
3
8
v s
e f f
[ A ]
[ s ]
2 A 6 A 5 0 A2 5 A1 6 A
4 A 1 0 A 2 0 A 3 0 A 6 3 A
10226410
3
8
2
4
I2_06411a
2 A
c
[A]
[A]
10 26410
4
826410
5
824
4 A
6 A
10 A
16 A
20/25 A
2
10
3
6
2
4
10
4
663 A
50 A
35 A
12
ef
Type InPvI2tsI2ta
4ms 500 V AC
A W A2s A2s
5SD601 22.8 0.7 2
5SD602 4 4 4.5 13
5SD603 64.8 10 29
5SD604 10 4.8 50 135
5SD605 16 5.9 78 220
5SD606 20 6.3 125 380
5SD607 25 8.3 265 800
5SD608 35 13 550 1600
5SD610 50 16.5 1800 5500
5SD611 63 18 3100 9600
261010 4
026410
1
82 6410
2
83
82 61044
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06077b
-1
0
1
2
3
4
5
[A]
2s[A s]
2
6 A
2 A
4 A
10 A
16 A
20 A
25 A
35 A
50 A
63 A
10-1
s10-2s10-3
s10-4
s
100s
ef
© Siemens AG 2016
24 Siemens · 10/2015
Cylindrical fuse links and cylindrical fuse holders
Fuse Systems
Cylindrical Fuse Systems
Overview
Cylindrical fuses are standard in Europe. There are a range of
different cylindrical fuse links and holders that comply with the
standards IEC 60269-1, -2 and -3, and which are suitable for use
in industrial applications. In South West Europe they are also
approved for use in residential buildings.
The cylindrical fuse holders are also approved according to
UL 512. The cylindrical fuse holders are tested and approved as
fuse disconnectors according to the switching device standard
IEC 60947-3. They are not suitable for switching loads.
Cylindrical fuse holders can be supplied with or without signal
detectors. In the case of devices with signal detector, a small
electronic device with LED is located behind an inspection
window in the plug-in module. If the inserted fuse link is tripped,
this is indicated by the LED flashing.
The switching state of the fuse holder can be signaled over a
laterally retrofitted auxiliary switch, which enables the integration
of the fuses in the automation process.
Benefits
Devices with pole number 1P+N are available in a single
modular width. This reduces the footprint by 50 %
The sliding catch for type ranges 8 x 32 mm and 10 x 38 mm
enables the removal of individual devices from the assembly
Space for a spare fuse in the plug-in module enables the
fast replacement of fuses. This saves time and money and
increases system availability
A flashing LED signals that a fuse link has been tripped.
This enables fast detection during runtime
Technical specifications
1) Degree of protection IP20 is tested according to regulations using a
straight test finger (from the front), with the device mounted and equipped
with a cover, housing or some other enclosure.
2) Max. cross-section 10 mm2 with K28 crimper from Klauke.
Cylindrical fuse links
3NW63.. 3NW60.. 3NW61.. 3NW62.. 3NW80.. 3NW81.. 3NW82..
Size mm × mm 8×32 10 × 38 14 × 51 22 × 58 10 × 38 14 × 51 22 × 58
Standards IEC 60269-1, -2, -3; NF C 60-200; NF C 63-210, -211; NBN C 63269-2, CEI 32-4, -12
Operational class gG aM
Rated voltages UnVAC 400 400 or 500
Rated current InA 2...20 0.5 ... 32 4...50 8...100 0.5 ... 32 2...50 10 ... 100
Rated breaking capacity
500 V versions kA AC -- 120 100
20
120 100
20
400 V versions kA AC 20 120 120
Mounting position Any, preferably vertical
Cylindrical fuse holders
3NW73.. 3NW70.. 3NW71.. 3NW72..
Size mm × mm 8×32 10 × 38 14 × 51 22 × 58
Standards IEC 60269-1, -2, -3; NF C 60-200, NF C 63-210, -211; NBN C 63269-2-1; CEI 32-4, -12;
UL 4248-1
Approvals Acc. to UL -- U U --
Acc. to CSA -- s s --
Rated voltage UnVAC 400 690
Acc. to UL/CSA V AC 400 600
Rated current InAAC 20 32 50 100
Rated breaking capacity kA 20 100
Breaking capacity
Utilization category AC-20B (switching without load), DC-20B
No-voltage changing
of fuse links
Yes
Sealable
when installed
Yes
Mounting position Any, preferably vertical
Degree of protection Acc. to IEC 60529 IP20, with connected conductors1)
Terminals with touch protection
according to BGV A3 at incoming
and outgoing feeder
Yes
Ambient temperature °C -5 to +40, humidity 90 % at +20
Conductor cross-sections
Rigid mm20.5 ... 10 2.5 ... 10 4...10
•Stranded mm
20.5 ... 10 2.5 ... 25 4...50
Finely stranded, with end sleeve mm20.5 ... 102) 2.5 ... 16 4...35
AWG (American Wire Gauge) AWG -- 10 ... 20 6...10 --
Tightening torque Nm 1.2 2.0 2.5
© Siemens AG 2016
25
Siemens · 10/2015
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and cylindrical fuse holders
Dimensional drawings
Auxiliary switches
Size
8 × 32 mm 10 × 38 mm 14 × 51 mm 22 × 58 mm
3NW70, 3NW73
1P 1P + N 2P 3P 3P+N
3NW71
1P 1P+N/2P 3P 3P+N
31,5
8,5
I2_06702c
38
I2_06703c
10,3
51
14,3
I2_06701c
58
22,2
I2_06704c
I201_12124
18 18 36 54 54 44 64
45
81
7
2
55
43
90
45
27 54 81 108
I201_07853b
7
70
3NW72
1P 1P+N/2P 3P 3P+N
70
43
45
7
117
I201_07869c
144
108
72
36
3NW7901
3NW7902
3NW7903
48,5
5
45
90
9
I201_10891
49,8
I201_15459
45
4469 64
83
© Siemens AG 2016
26 Siemens · 10/2015
Cylindrical fuse links and cylindrical fuse holders
Fuse Systems
Cylindrical Fuse Systems
Circuit diagrams
Graphical symbols
Auxiliary switches
1P 1P+N 2P 3P 3P+N
2
1
2
1
N
N
2
1
4
3
2
1
4
3
6
5N
N
5
6
3
4
1
2
3NW7901
3NW7902
3NW7903
22 14
13/21
22
12
21
11
© Siemens AG 2016
27
Siemens · 10/2015
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and cylindrical fuse holders
Characteristic curves
3NW60 series
Size: 10 × 38 mm
Operational class: gG
Rated voltage: 500 V AC (0.5 ... 25 A),
400 V AC (32 A)
Rated current: 2 ... 32 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 101 102103
10-4
10-3
10-2
10-1
100
101
102
103
104
104
32 A
25 A
20 A
16 A
12 A
10 A
8 A
6 A
4 A
2 A
1 A
0,5 A
[A]
p
[s]
vs
Prospective short-circuit current
Virtual pre-arcing time
I201_19158
5
36 246 246 246 246
2
2
2
4
4
4
6
6
6
101
102
103
104
101 102 103 104 105
4 A
2 A
1 A
0,5 A
32 A
25 A
20 A
16 A
12 A
10 A
8 A
6 A
[A]
c
m = 2,3 p
[A]
p
Peak current
Prospective short-circuit current
I201_19159
Type InPv I2tsI2ta
1ms 230 V AC 400 V AC 500 V AC
A W K A2s A2s A2s A2s
3NW6000-1 0.5 0.07 On req. 0.06 0.06 0.09 0.10
3NW6011-1 10.45 On req. 0.50 0.45 0.63 0.7
3NW6002-1 20.50 On req. 44.80 6.80 7.50
3NW6004-1 40.85 On req. 34 35.70 49.50 55
3NW6001-1 60.95 On req. 12.5 45.50 63 70
3NW6008-1 81.15 On req. 29 10 153 170
3NW6003-1 10 1.30 On req. 56 201 279 310
3NW6006-1 12 1.40 On req. 99 344 477 530
3NW6005-1 16 1.90 On req. 199 630 873 970
3NW6007-1 20 2.40 On req. 333 975 1350 1500
3NW6010-1 25 2.70 On req. 619 1560 2160 2400
3NW6012-1 32 2.80 On req. 1331 3250 4500 --
103
104
10-2
10-1
100
101
102
68
10 12 16 20 25 32
0,5 12
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
4
2t [A2s]
n [A]
400 V
230 V
500 V
²ts
²ta
I201_19160a
© Siemens AG 2016
28 Siemens · 10/2015
Cylindrical fuse links and cylindrical fuse holders
Fuse Systems
Cylindrical Fuse Systems
3NW61series
Size: 14 × 51 mm
Operational class: gG
Rated voltage: 500 V AC (4 ... 40 A),
400 V AC (50 A)
Rated current: 4 ... 50 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2100
10-2
2
4
6
10-1
6410
1
82 64102
824
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06603b
6103
8
vs
[A]
[s]
4 A
6 A
10 A
16 A
20 A
25 A
32 A
40 A
50 A
ef
102
c
[A]
[A]
10
I201_06560c
2
468 2 10
3
468210
4
468210
5
46
8
2
4
6
6
10
3
2
4
2
4
6
10
4
12
4 A
6 A
8 A
10 A
12 A
16 A
20 A
25 A
32 A
40 A
50 A
rms
Type InPv I2tsI2ta
1ms 230 V AC 400 V AC 500 V AC
A W K A2s A2s A2s A2s
3NW6104-1 41.9 19 516 20 26
3NW6101-1 62.5 25 48 85 100 120
3NW6108-1 82.4 18 110 200 250 350
3NW6103-1 10 0.8 12 230 420 750 1050
3NW6106-1 12 1.0 16 390 600 800 1200
3NW6105-1 16 1.6 27 600 1000 1400 1700
3NW6107-1 20 2.3 32.5 670 1400 1800 2100
3NW6110-1 25 2.2 31.5 1300 2300 2800 3200
3NW6112-1 32 3.2 39.5 2500 4100 5500 6500
3NW6117-1 40 4.5 48 3600 6100 8000 9200
3NW6120-1 50 4.8 55 8000 12200 16000 --
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06599c
0
1
2
3
4
n[A]
2[A s]
2
t
500 A
400 A
230 A
2a
t
2s
2
4
6
105
4610 40
16 50
20 25 32
812
© Siemens AG 2016
29
Siemens · 10/2015
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and cylindrical fuse holders
3NW62 series
Size: 22 × 58 mm
Operational class: gG
Rated voltage: 500 V AC (8 ... 80 A),
400 V AC (100 A)
Rated current: 8 ... 100 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2101
10-2
2
4
6
10-1
6410
2
82 64103
824
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06604b
6104
8
vs
[A]
[s]
16 A
20 A
25 A
32 A
40 A
50 A
63 A
80 A
100 A
12 A
10 A
8 A
ef
1 0 2264 1 08
1 0
2
4
6
c
e f f
[ A ]
[ A ]
1 0
2
3264 1 08 4264 1 08 524
I 2 _ 0 6 5 5 8 b
4
1 0
6
2 0 A
1 6 A
2 5 A
3 2 A
2
4
2
3
4
4 0 A
5 0 A
6 3 A
8 0 A
1 0 0 A
12
1 2 A
1 0 A
8 A
Type InPv I2tsI2ta
1ms 230 V AC 400 V AC 500 V AC
A W K A2s A2s A2s A2s
3NW6208-1 82.5 15 110 200 170 350
3NW6203-1 10 0.9 10.5 230 420 760 1050
3NW6206-1 12 1.1 12 390 600 800 1200
3NW6205-1 16 1.6 14.5 600 1000 1400 1700
3NW6207-1 20 2.4 22.5 670 1200 1800 2200
3NW6210-1 25 2.7 24 1300 2100 2800 3300
3NW6212-1 32 3.2 28 2450 4400 6100 7200
3NW6217-1 40 4.9 35 3600 6200 8000 10000
3NW6220-1 50 5.9 46 6800 11400 16200 20600
3NW6222-1 63 6.8 48 12500 18800 24000 30000
3NW6224-1 80 7.5 48 24700 30500 43000 52500
3NW6230-1 100 8.4 55 46000 64700 80000 --
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06600c
0
1
2
3
4
n[A]
2[A s]
2
t
500 A
400 A
230 A
2a
t
2s
2
4
6
105
16 80
32 100
40 50 63
20 25
12108
© Siemens AG 2016
30 Siemens · 10/2015
Cylindrical fuse links and cylindrical fuse holders
Fuse Systems
Cylindrical Fuse Systems
3NW630.-1 series
Size: 8 × 32 mm
Operational class: gG
Rated voltage: 400 V AC
Rated current: 2 ... 20 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2100
10-2
2
4
6
10-1
6410
1
82 64102
824
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06605b
6103
8
vs
[A]
[s]
4 A 10 A 20 A
2 A 6 A 16 A
ef
102264108
10
4
6
2
4
6
2
c
[A]
[A]
103
2
32641084264108524
I2_06559b
4
104
6
12
2 A
4 A
10 A
16 A
20 A
6 A
ef
Type InPv I2tsI2ta
1ms 400 V AC
A W K A2s A2s
3NW6302-1 2 2 27 1.6 6
3NW6304-1 41.5 19 521
3NW6301-1 61.5 20.5 48 85
3NW6303-1 10 0.7 15 230 530
3NW6305-1 16 1.1 29 600 1400
3NW6307-1 20 1.7 34.5 790 1800
2
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06601c
0
1
2
3
4
n[A]
2[A s]
2
4 6 10 16 20
t
400 A
230 A 2a
t
2s
© Siemens AG 2016
31
Siemens · 10/2015
Fuse Systems
Cylindrical Fuse Systems
Cylindrical fuse links and cylindrical fuse holders
3NW8 series
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
Size: 10 × 38 mm, 14 × 51 mm, 22 × 58 mm
Operational class: aM
Rated voltage: 500 V AC,
400 V AC (3NW8120-1, 3NW8230-1)
Rated current: 0.5 ... 100 A
2
10-3
2
4
6
10-2
6410
1
864102
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
I2_06567b
6103
8
vs
[A]
[s]
16 A
20 A
25 A
32 A
40 A
50 A
63 A
80 A
100 A
224
0,5 A
1 A
2 A
4 A
12 A
10 A
8 A
6 A
ef
ef
102
6
c
[A]
[A]
10
I2_06566b
2
468 2 10
3
46
82104
4682 10
5
468 2
2
4
6
103
2
4
6
104
2
12
0,5 A
100 A
80 A
63 A
50 A
40 A
32 A
25 A
20 A
16 A
12 A
10 A
8 A
6 A
4 A
2 A
1 A
Type Size BK InUnPv
mm A V W
3NW8000-1 10 x 38 aM 0.5 500 0.1
3NW8011-1 10.1
3NW8002-1 20.1
3NW8004-1 40.3
3NW8001-1 60.4
3NW8008-1 80.6
3NW8003-1 10 0.6
3NW8006-1 12 0.8
3NW8005-1 165 0.9
3NW8007-1 20 1.1
3NW8010-1 25 400 1.2
3NW8012-1 32 1.8
3NW8102-1 14 x 51 2690 1
3NW8104-1 40.3
3NW8101-1 60.3
3NW8108-1 80.5
3NW8103-1 10 0.6
3NW8106-1 12 0.6
3NW8105-1 16 1
3NW8107-1 20 1
3NW8110-1 25 1.3
3NW8112-1 32 1.9
3NW8117-1 40 2
3NW8120-1 50 500 3.7
3NW8208-1 22 x 58 8690 No info.
3NW8203-1 10 No info.
3NW8206-1 12 No info.
3NW8205-1 16 0.9
3NW8207-1 20 1.1
3NW8210-1 25 1.4
3NW8212-1 32 2
3NW8217-1 40 2.5
3NW8220-1 50 2.6
3NW8222-1 63 4.1
3NW8224-1 80 4.9
3NW8230-1 100 500 5.6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
0
1
2
3
4
n[A]
2[A s]
2
1 100
2
4
6
105
2
I2_06995b
2
500 A
400 A
t
2s
468101216
20 25 32 40 50 63 80
© Siemens AG 2016
32 Siemens · 10/2015
Fuse holders in size 10 x 38 mm and Class CC
Fuse Systems
Cylindrical Fuse Systems
Overview
A key feature of our three-pole fuse holders is their ultra compact
design. With a width of only 45 mm, they are ideal for use with
fused motor starter combinations. Because the contactor and
the fuse holder have the same 45 mm width, they are easy to
mount on top of one another. The strong current-limiting fuses
ensure a type 2 protection level (coordination according to
IEC 60947-4, no damage protection) for the contactor.
The UL version has an SCCR value of 200 kA. The accessories
are generally UL-certified.
Customers can mount an auxiliary switch which signals the
switching state or prevents the fuse holder from switching off
under load by interrupting the contactor control, thus increasing
safety for the operator and process. Busbars and a matching
three-phase feeder terminal complete the product range.
Benefits
Compact design, especially for motor starter combinations
For IEC fuses of size 10 x 38 mm up to 32 A and Class CC
UL fuses up to 30 A
Meets the requirements of UL 508 with regard to clearances
UL-approved microswitches, busbars and adapters for
60 mm busbar systems
Optical signal detector for fast fault locating
Compact cylindrical fuse holder Class CC with signal detector and
mounted auxiliary switch
Installation configuration of a cylindrical fuse holder and a SIRIUS
contactor on busbar device adapter for the 60 mm busbar system
© Siemens AG 2016
33
Siemens · 10/2015
Fuse Systems
Cylindrical Fuse Systems
Fuse holders in size 10 x 38 mm and Class CC
Technical specifications
1) Degree of protection IP20 is tested according to regulations using a
straight test finger (from the front), with the device mounted and equipped
with a cover, housing or some other enclosure.
Cylindrical fuse holders Fuse holders
3NW70..-1 3NW75..-1HG
Size mm × mm 10 × 38 Class CC
Standards IEC 60269; UL4248-1; CSA UL4248-1; CSA
Approvals
Acc. to UL U, UL File Number E171267 u, UL File Number E171267
Acc. to CSA s s
Rated voltage UnVAC 690 600
Rated current InAAC 32 30
Rated short-circuit strength kA 120 (at 500 V)
80 (at 690 V)
200
Breaking capacity
Utilization category AC-20B (switching without load) --
Rated impulse withstand voltage kV 6
Overvoltage category III
Pollution degree 2
Max. power dissipation of the fuse link W3
No-voltage changing of fuse links °C -5 to +40, humidity 90 % at +20
Sealable when installed Yes
Lockable with padlock Yes
Mounting position Any, preferably vertical
Current direction Any
Degree of protection Acc. to IEC 60529 IP20, with connected conductors1)
Terminals with touch protection acc. to BGV A3
at incoming and outgoing feeder
Yes
Ambient temperature °C -5 to +40, humidity 90 % at +20
Conductor cross-sections
Finely stranded, with end sleeve mm21...4
AWG cables (American Wire Gauge) AWG 18 ... 10
Tightening torque Nm 1.5
lb.in 13
Terminal screws PZ2
Auxiliary switches
3NW7903-1
Standards IEC 60947
Approvals U, s, UL 508, UL File Number E334003
Utilization category AC-12 DC-13 AC-15 Acc. to UL
Rated voltage UnVAC 250 -- -- -- 24 120 240 240
VDC -- 24 120 240 -- -- -- --
Rated current InA 5 2 0.5 0.25 4 3 1.5 5
Busbars
5ST260.
For cylindrical fuse holders 3NW70. .-1 3NW75. .-1HG
Pin spacing mm 15
Standards EN 609741 (VDE 0660-100), IEC 60947-1:2004, UL 508, CSA 22.2
Approvals u, UL 4248-1, UL File Number E337131
Busbar material E-Cu 58 F25
Partition material PA66-V0
Lamp wire resistance/1.5 mm2°C 960
Insulation coordination Overvoltage category III, degree of pollution 2
Rated operating voltage Un
Acc. to UL V AC -- 600
Acc. to IEC V AC 690 --
Maximum busbar current In
Acc. to UL A -- 65
Acc. to IEC A 80 --
© Siemens AG 2016
34 Siemens · 10/2015
Fuse holders in size 10 x 38 mm and Class CC
Fuse Systems
Cylindrical Fuse Systems
Terminals
5ST2600
For cylindrical fuse holders 3NW70. .-1 3NW75. .-1HG
Pin spacing mm 15
Standards IEC 60999:2000, UL 508
Approvals u, UL 4248-1, UL File Number E337131
Enclosure/cover material PA66-V0
Lamp wire resistance/1 mm2°C 960
Temperature resistance PA66-V0, HDT B ISO 179,
UL 94-V0/1.5
°C 200
Insulation coordination Overvoltage category III, degree of pollution 2
Maximum operating voltage Umax
Acc. to UL V AC -- 600
Acc. to IEC V AC 690 --
Maximum electrical load Imax
Acc. to UL A -- 65
Acc. to IEC A 80 --
Rated current InA63
Conductor cross-sections
Solid/stranded mm22.5 ... 35
Finely stranded, with end sleeve mm22.5 ... 25
Tightening torque of clamping screw Nm 2.5 ... 3.5
© Siemens AG 2016
35
Siemens · 10/2015
Fuse Systems
Cylindrical Fuse Systems
Fuse holders in size 10 x 38 mm and Class CC
Dimensional drawings
Circuit diagrams
Circuit diagrams
3NW703.-1
3NW753.-1HG
5ST260. 5ST2600







I202_01414
I202_01412












I202_01413
3NW703.-1
3NW753.-1HG
3NW7903-1
I202_01447
6
5
4
3
2
1
22
14
13
21
© Siemens AG 2016
36 Siemens · 10/2015
Class CC fuse systems
Fuse Systems
Overview
Class CC fuses are used for "branch circuit protection".
The enclosed fuse holders are designed and tested to comply
with the US National Electrical Code NEC 210.20(A). This means
that when subject to continuous operation, only 80 % of the rated
current is permissible as operational current.
An operational current of 100 % of the rated current (30 A) is only
permissible short-time.
The devices are prepared for the inscription labels of the
ALPHA FIX terminal blocks 8WH8120-7AA15 and
8WH8120-7XA05.
There are three different series:
Characteristic: slow 3NW1...-0HG
For the protection of control transformers, reactors, induc-
tances. Significantly slower than the minimum requirements
specified by UL for Class CC Fuses of 12 s at 2 × In.
Characteristic: quick 3NW2...-0HG
For a wide range of applications, for the protection of lighting
installations, heating, control systems.
Characteristic: slow, current-limiting 3NW3...-0HG
Slow for overloads and quick for short circuits. High current
limitation for the protection of motor circuits.
Note:
For class CC compact fuse holders for motor starter combina-
tions, see page 32.
Benefits
For switchgear assemblies and machine manufacturers
who export their systems to the USA or Canada
Easier export due to UL and CSA approvals for typical
applications
Modern design with touch protection to BGV A3 ensures
safe installation.
Technical specifications
Class CC fuse holders
3NW75.3-0HG
Standards UL 4248-1; CSA C22.2
Approvals UL 4248-1; UL File Number E171267; CSA C22.2
Rated voltage UnV AC 600
Rated current InA30
Rated conditional short-circuit current kA 200
Breaking capacity
Utilization category AC-20B (switching without load)
Max. power dissipation of the fuse link
With cable, 6 mm2W 3
With cable, 10 mm2W4.3
Rated impulse withstand voltage kV 6
Overvoltage category II
Pollution degree 2
No-voltage changing of fuse links Yes
Sealable when installed Yes
Mounting position Any
Current direction
Any
Degree of protection acc. to IEC 60529 IP20
Terminals with touch protection acc. to BGV A3
at incoming and outgoing feeder
Yes
Ambient temperature °C 45
Conductor cross-sections
Solid and stranded mm21.5 ... 16
AWG conductor cross-section, solid and stranded AWG 15 ... 5
Tightening torque Nm 2.5 (22 lb.in)
Class CC fuse links
3NW1...-0HG 3NW2...-0HG 3NW3...-0HG
Standards UL 248-4; CSA C22.2
Approvals UL 248-4; UL File Number E258218; CSA C22.2
Characteristic Slow Quick Slow, current limiting
Rated voltage VAC
VDC
600
--
600
--
600
150 (3 .... 15 A)
300 (< 3 A, > 15 A)
Rated breaking capacity kA AC 200
© Siemens AG 2016
37
Siemens · 10/2015
Fuse Systems
Class CC fuse systems
Dimensional drawings
3NW1. . .-0HG
3NW2. . .-0HG
3NW3. . .-0HG
3NW75.3-0HG
38,1
Ø
10,3
45
81
37
749
58
543618
I201_13727
© Siemens AG 2016
38 Siemens · 10/2015
Class CC fuse systems
Fuse Systems
Characteristic curves
3NW1...-0HG series
Time/current characteristics diagram
3NW2...-0HG series
Time/current characteristics diagram
3NW1...-0HG series
Time/current characteristics diagram
3NW3...-0HG series
Time/current characteristics diagram
Prospective short-circuit current
Virtual melting time
I202_02185
0,6 A
0,8 A
1 A
1,5 A
2 A
3 A
4 A
5 A
6 A
7,5 A
2,5 A
210064868 210164810
242
p
[
A]
10
2
4
6
8
-1
10
2
4
6
8
0
10
2
4
6
8
1
10
tvs [s]
2
8
6
102
4
2
[s]
p[A]
210 064810
1264810
2264810
3
1 A
2 A
3 A
5 A
8 A
10 A
15 A
20 A
30 A
-2
10
2
4
6
8
-1
10
2
4
6
8
0
10
2
4
6
8
1
10
2
2
10
2
4
6
8
3
10
4
6
8
I201_12162a
Prospective short-circuit current
Virtual melting time tvmt
Prospective short-circuit current
Virtual melting time
20 A
15 A
30 A
I202_02186
10 A
8 A
tvs
210
0
648 210
1
6648 8210
2
10
3
4
p[A]
-2
10
2
4
6
8
-1
10
2
4
6
8
0
10
2
4
6
8
1
10
2
2
10
3
10
2
4
6
8
4
6
8
[s]
2100648 2101648 210 26810
3
4
p[A]
-2
10
2
4
6
8
-1
10
2
4
6
8
0
10
2
4
6
8
1
10
2
2
10
3
10
2
4
6
8
4
6
8
1 A
3 A
4 A
6 A
8 A
10 A
12 A
15 A
20 A
25 A
30 A
[s]
I201_12163a
Prospective short-circuit current
Virtual melting time tvmt
© Siemens AG 2016
39
Siemens · 10/2015
Fuse Systems
Class CC fuse systems
3NW3...-0HG series
Current limiting diagram
210
1
64810
2
26424810
3
p[A]
1
10
2
4
6
8
2
10
2
3
10
2
4
4
6
8
c[A]
I201_12164
30 A
25 A
20 A
15 A
2,8 A
1,25 A
© Siemens AG 2016
40 Siemens · 10/2015
Busbar systems
Fuse Systems
Overview
Busbars with pin-type connections can be used for NEOZED
safety switching devices and fuse bases. Busbars in 10 mm2
and 16 mm2 versions are available.
Busbars with fork plugs are used for the most frequently used
NEOZED fuse bases made of ceramic.
Benefits
Clear and visible conductor connection that can be easily
checked when using the NEOZED D02 comfort base and
which facilitates cable entry
Bus-mounting of NEOZED fuse bases made of molded plastic
on 3-phase busbar with fork plug, which can be cut to length
Bus-mounting of NEOZED fuse bases made of ceramic on
3-phase busbar with fork plug, which can be cut to length
Bus-mounting of MINIZED D01 fuse switch disconnectors on
3-phase busbar with fork plug, can be cut to length
Clear and visible conductor connection that can be easily
checked when using MINIZED D02 switch disconnectors.
This facilitates cable entry and saves time
Bus-mounting of cylindrical fuse holders 8 × 32 mm and
10 × 38 mm with three-phase pin busbar that can be cut
to length
© Siemens AG 2016
41
Siemens · 10/2015
Fuse Systems
Busbar systems
Bus-mounting of SITOR cylindrical fuse holders
10 mm x 38 mm with the same terminal connection
as Class CC fuse holders with 3-phase pin busbar
that can be cut to length
Bus mounting with infeed through a connection terminal
directly on the fuse holder up to a conductor cross-section
of 25 mm²
Technical specifications
5ST, 5SH
Standards EN 60439-1 (VDE 0660-500): 2005-01
Busbar material SF-Cu F 24
Partition material Plastic Cycoloy 3600,
heat-resistant above 90 °C,
flame-retardant,
self-extinguishing,
free of dioxins and halogens
Rated operational voltage UcVAC 400
Rated current In
Cross-section 10 mm2A63
Cross-section 16 mm2A80
Rated impulse withstand voltage Uimp kV 4
Test pulse voltage (1.2/50) kV 6.2
Rated conditional short-circuit current Icc kA 25
Resistance to climate
Constant atmosphere Acc. to DIN 50015 23/83; 40/92; 55/20
Humid heat Acc. to
IEC 60068-2-30
28 cycles
Insulation coordination
Overvoltage category III
Pollution degree 2
Maximum busbar current IS per phase
Infeed at the start of the busbar
- Cross-section 10 mm2A63
- Cross-section 16 mm2A80
Infeed at the center of the busbar
- Cross-section 10 mm2A100
- Cross-section 16 mm2A130
© Siemens AG 2016
42 Siemens · 10/2015
Busbar systems
Fuse Systems
5ST37. . - .HG busbars acc. to UL 508
Infeed at the start of the busbar Infeed along the busbar or midpoint infeed
5ST37. .-0HG 5ST37. .-2HG 5ST3770-0HG 5ST3770-1HG
Standards UL 508, CSA C22.2 No. 14-M 95
Approvals UL 508 File No. E328403
CSA
Operational voltage
Acc. to IEC V AC 690
Acc. to UL 489 V AC 600
Rated conditional short-circuit current kA 10 (RMS symmetrical 600 V for three cycles)
Dielectric strength kV/mm 25
Surge strength kV > 9.5
Rated current A-- -- 115
Maximum busbar current IS per phase
Infeed at the start of the busbar A 80 100 -- --
Infeed at the center of the busbar A 160 200 -- --
Insulation coordination
Overvoltage category III
Pollution degree 2
Busbar cross-section mm2 Cu 18 25 -- --
Infeed Any
Conductor cross-sections AWG -- -- 10 ... 1/0 14 ... 1
mm2-- -- 6 ... 35 1.5 ... 50
Terminals
Terminal tightening torque Nm -- -- 53.5
lbs/in -- -- 50 35
The sum of the output current per branch must not be greater than the
busbar current IS1,2/phase.
S
I201_13755
S1 S2
321
1
23
I201_13754a
S
© Siemens AG 2016
43
Siemens · 10/2015
Fuse Systems
Busbar systems
Dimensional drawings
5ST37
Pin spacing in MW (modular width; 1 MW = 18 mm)
Dimensions of side views in mm (approx.)
5ST3700
5ST3701
5ST3703 5ST3704
5ST3705
Single-phase Single-phase Two-phase
5ST3708
5ST3710
5ST3714
Three-phase Three-phase
5ST2
Fork spacing in MW (modular width; 1 MW = 18 mm)
Dimensions of side views in mm (approx.)
5ST2186
5ST2190
5ST2187
5ST2191
5ST2188
5ST2192
Single-phase Two-phase Three-phase
Busbars for DIAZED EZR fuse bases
5SH3500 5SH3501
5SH5
Fork spacing in MW (modular width; 1 MW = 18 mm), dimensions of side views in mm (approx.)
5SH5517 5SH5320 5SH5321 5SH5322
3,5
13
1,5
I201_13674
1
15
18
1
L1 L2
I201_13748
15
18
L1 L2 L3
11
L1 L2 L3
1,5 1,5
I201_13749
I201_13750
13
3,5
15,1
I201_13426a
52
6
6
960
1030
13
2
97
6
6
6
872
970
13
3
I201_13427a
I201_13825
1,5
15
5
1,5
15
17
I201_13826
2
1,5
12
3
12
I201_13827
© Siemens AG 2016
44 Siemens · 10/2015
Busbar systems
Fuse Systems
5ST37 . . - . HG busbars acc. to UL 508
5ST37
Pin spacing in MW (modular width; 1 MW = 18 mm)
Dimensions of side views in mm (approx.)
5ST3701-0HG 5ST3703-0HG 5ST3705-0HG
5ST3710-0HG 5ST3714-0HG 5ST3701-2HG
5ST3705-2HG 5ST3710-2HG
5ST3748-0HG 5ST3750-0HG
5ST3770-0HG 5ST3770-1HG
2
1
I202_02123
1,5
15
5
L2L1
1
1,5
21
23
L1 L2 L3
11
23
21
L1 L2 L3
1,5 1,5
I202_02122
1,5
2,5
I202_02104
1,5
15
5
23
21
1,5
L1 L2
2
I202_02105
23
21
L1 L2 L3
21,5 1,5
I202_02106
14
59,5
1
I202_02107
24
22 9,5
I202_02108
18,5
60
83
16 28,5
I202_02110
30
40 18
I202_02111
5ST36 touch protection covers
Pin spacing in MW (modular width; 1 MW = 18 mm)
Dimensions of side views in mm (approx.)
5ST3655-0HG
85,2
14 3,8
5,7
R 0,5
24
23,8
71,2
I202_02109
17,8
© Siemens AG 2016
45
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
Overview
LV HRC fuse systems (NH type) are used for installation systems
in non-residential, commercial and industrial buildings as well as
in switchgear assemblies of power utilities. They therefore pro-
tect essential building parts and systems.
LV HRC fuse systems (NH type) are fuse systems designed for
operation by experts. There are no constructional requirements
for non-interchangeability of rated current and touch protection.
The components and auxiliary equipment are designed in such
a way as to ensure the safe replacement of LV HRC fuse systems
or isolation of systems.
LV HRC fuse links are available in the sizes 000, 00, 0, 1, 2, 3, 4
and 4a.
LV HRC fuse links are available in the following operational
classes:
gG for cable and line protection
aM for short-circuit protection of switching devices in motor
circuits
gR or aR for protection of power semiconductors
gS: The new gS operational class combines cable and line
protection with semiconductor protection
LV HRC fuse links of size 000 can also be used in LV HRC fuse
bases, LV HRC fuse switch disconnectors, LV HRC fuse strips as
well as LV HRC in-line fuse switch disconnectors of size 00.
The fuse links 300 A, 355 A and 425 A comply with the standard
but do not have the VDE mark.
LV HRC components:
I201_13743a
1
2345
6
15 16 17 18 19
10 11 12
14
13
9
8
7
LV HRC fuse base from the SR60 busbar system
LV HRC fuse base for busbar mounting
LV HRC fuse base, 3-pole
LV HRC fuse base, 1-pole
LV HRC contact covers
LV HRC fuse link
LV HRC signal detector
LV HRC partition
LV HRC protective cover
LV HRC fuse bases with swivel mechanisms,
- for screw fixing on mounting plate
- for screw fixing on busbar system
- for claw fixing on busbar
LV HRC protective cover for LV HRC fuse bases with
swivel mechanism
LV HRC swivel mechanism
LV HRC fuse base cover
LV HRC isolating blade with insulated grip lugs
LV HRC isolating blade with non-insulated grip lugs
LV HRC fuse puller with sleeve
LV HRC fuse puller
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
© Siemens AG 2016
46 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
Technical specifications
1) Manufacturer's confirmation for 690 V +10 % rated voltage available on
request.
LV HRC fuse links
Operational class Operational
class
gG aM
3NA6...-4 3NA6... 3NA3... 3NA6...-6 3NA3...-6 3ND1
3NA6...-4KK 3NA6...-7 3NA3...-7 3NA7...-6 3ND2
3NA383.-8 3NA7...
3NA7...-7
Standards IEC 60269-1, -2; EN 60269-1; DIN VDE 0636
Approvals DIN VDE 0636-2; CSA 22.2 No.106, File Number 016325_0_00 (CSA approval of fuses 500 V for 600 V)
Rated voltage Un
Sizes 000 and 00 V AC 400 500 500 6901) 6901) 500
VDC -- 250 250 250 250 --
Sizes 1 and 2 V AC 400 500 500 6901) 6901) 690
VDC -- 440 440 440 440 --
•Size 3 VAC -- -- 500 -- 6901) 690
VDC -- -- 440 -- 440 --
Sizes 4 and 4a (IEC design) V AC -- -- 500 -- -- --
VDC -- -- 440 -- -- --
Rated current InA10 ... 400 2...400 2 ... 1250 2...315 2...500 6...630
Rated breaking capacity kA AC 120
kA DC -- 25 --
Contact pins Non-corroding, silver-plated
Resistance to climate °C -20 ... +50 at 95% relative humidity
© Siemens AG 2016
47
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
Characteristic curves
3NA30 series
Size: 0
Operational class: gG
Rated voltage: 500 V AC/440 V DC
Rated current: 6 ... 160 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06088a
6104
8
6 A
10 A
16 A
20 A
25 A
80 A
100 A
125 A
160 A
32 A
35 A
40 A
63 A
50 A
vs
[A]
[s]
ef
ef
102264108
10
2
4
6
160 A
100 A
2
4
6
3
40 A
32 A
20 A
10 A
125 A
50 A
35 A
25 A
16 A
6 A
c
[A]
[A]
104
2
32641084264108524
80 A
63 A
I2_06062a
12
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3001 61.5 646 50
3NA3003 10 1 9 120 130
3NA3005 16 1.9 11 370 420
3NA3007 20 2.3 13 670 750
3NA3010 25 2.7 15 1200 1380
3NA3012 32 313 2200 2400
3NA3014 35 317 3000 3300
3NA3017 40 3.4 17 4000 4500
3NA3020 50 4.5 24 6000 6800
3NA3022 63 5.8 27 7700 9800
3NA3024 80 734 12000 16000
3NA3030 100 8.2 37 24000 30600
3NA3032 125 10.2 38 36000 50000
3NA3036 160 13.5 44 58000 85000
Type I2ta
230 V AC 400 V AC 500 V AC
A2s A2s A2s
3NA3001 80 110 150
3NA3003 180 265 370
3NA3005 580 750 1000
3NA3007 1000 1370 1900
3NA3010 1800 2340 3300
3NA3012 3400 4550 6400
3NA3014 4900 6750 9300
3NA3017 6100 8700 12100
3NA3020 9100 11600 16000
3NA3022 14200 19000 26500
3NA3024 23100 30700 43000
3NA3030 40800 56200 80000
3NA3032 70000 91300 130000
3NA3036 120000 158000 223000
ef
261010 4
126410
2
82 6410
3
84
82 61045
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06081b
1
2
3
4
5
6
7
160 A
125 A
80 A
63 A
50 A
40 A
32 A
25 A
20 A
16 A
100 A
6 A
10A
35 A
100s
10-1
s
10-2s
10-3
s
10-4
s
[A]
2s[A s]
2
© Siemens AG 2016
48 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3NA31, 3NA61, 3NA71 series
Size: 1
Operational class: gG
Rated voltage: 500 V AC/440 V DC
Rated current: 16 ... 250 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
ef
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06063c
6104
8
16 A
20 A
25 A
80 A
100 A
125 A
160 A
35 A
40 A
63 A
50 A
200 A
224 A
250 A
vs
[A]
[s]
102264108
10
4
6
160 A
100 A
2
4
6
3
40 A
20 A
125 A
50 A
35 A
25 A
16 A
c
[A]
[A]
104
2
32641084264108524
80 A
63 A
I2_06053b
4
200 A
224 A
250 A
12
ef
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3105, 3NA6105, 3NA7105 16 2.1 8370 420
3NA3107, 3NA6107, 3NA7107 20 2.4 10 670 750
3NA3110, 3NA6110, 3NA7110 25 2.8 11 1200 1380
3NA3114, 3NA6114, 3NA7114 35 3.2 16 3000 3300
3NA3117, 3NA6117, 3NA7117 40 3.6 16 4000 4500
3NA3120, 3NA6120, 3NA7120 50 4.6 20 6000 6800
3NA3122, 3NA6122, 3NA7122 63 621 7700 9800
3NA3124, 3NA6124, 3NA7124 80 7.5 29 12000 16000
3NA3130, 3NA6130, 3NA7130 100 8.9 30 24000 30600
3NA3132, 3NA6132, 3NA7132 125 10.7 31 36000 50000
3NA3136, 3NA6136, 3NA7136 160 13.9 34 58000 85000
3NA3140, 3NA6140, 3NA7140 200 15 36 115000 135000
3NA3142, 3NA6142, 3NA7142 224 16.1 37 145000 170000
3NA3144, 3NA6144, 3NA7144 250 17.3 39 205000 230000
Type I2ta
230 V AC 400 V AC 500 V AC
A2s A2s A2s
3NA3105, 3NA6105, 3NA7105 580 750 1000
3NA3107, 3NA6107, 3NA7107 1000 1370 1900
3NA3110, 3NA6110, 3NA7110 1800 2340 3300
3NA3114, 3NA6114, 3NA7114 4900 6750 9300
3NA3117, 3NA6117, 3NA7117 6100 8700 12100
3NA3120, 3NA6120, 3NA7120 9100 11600 16000
3NA3122, 3NA6122, 3NA7122 14200 19000 26500
3NA3124, 3NA6124, 3NA7124 23100 30700 43000
3NA3130, 3NA6130, 3NA7130 40800 56200 80000
3NA3132, 3NA6132, 3NA7132 70000 91300 130000
3NA3136, 3NA6136, 3NA7136 120000 158000 223000
3NA3140, 3NA6140, 3NA7140 218000 285000 400000
3NA3142, 3NA6142, 3NA7142 299000 392000 550000
3NA3144, 3NA6144, 3NA7144 420000 551000 780000
ef
261010 4
126410
2
82 6410
3
84
82 61045
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06082b
1
2
3
4
5
6
7
10-2s
100s
10-1
s
10-3
s
10-4
s
160 A
125 A
80 A
63 A
50 A
40 A
35 A
25 A
20 A
16 A
100 A
200 A
224 A
250 A
[A]
2s[A s]
2
© Siemens AG 2016
49
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA31..-6, 3NA61..-6, 3NA71..-6 series
Size: 1
Operational class: gG
Rated voltage: 690 V AC1)/440 V DC
Rated current: 50 ... 200 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2ts values diagram
1) Manufacturer's confirmation for 690 V +10 % rated voltage available on
request.
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_06044b
6104
8
200 A
160 A
125 A
100 A
80 A
63 A
50 A
vs
[A]
[s]
250 A
rms
rms
I201_06042b
102264108
10
160 A
100 A
2
4
6
3
125 A
50 A
c
[A]
[A]
104
2
32641084264108524
80 A
63 A
4
200 A
250 A
6
12
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3120-6, 3NA6120-6, 3NA7120-6 50 6.7 21 440 7400
3NA3122-6, 3NA6122-6, 3NA7122-6 63 7.6 22 7600 10100
3NA3124-6, 3NA6124-6, 3NA7124-6 80 6.7 22 13500 17000
3NA3130-6, 3NA6130-6, 3NA7130-6 100 8.7 28 21200 30500
3NA3132-6, 3NA6132-6, 3NA7132-6 125 10.5 29 36000 50000
3NA3136-6, 3NA6136-6, 3NA7136-6 160 13.8 33 58000 85000
3NA3140-6, 3NA6140-6, 3NA7140-6 200 16.6 35 132000 144000
Type I2ta
230 V AC 400 V AC 690 V AC
A2s A2s A2s
3NA3120-6, 3NA6120-6, 3NA7120-6 9100 11 200 1900
3NA3122-6, 3NA6122-6, 3NA7122-6 13600 17000 24000
3NA3124-6, 3NA6124-6, 3NA7124-6 24300 32000 55000
3NA3130-6, 3NA6130-6, 3NA7130-6 42400 52000 75000
3NA3132-6, 3NA6132-6, 3NA7132-6 69500 82200 130000
3NA3136-6, 3NA6136-6, 3NA7136-6 120000 155000 223000
3NA3140-6, 3NA6140-6, 3NA7140-6 211000 240000 360000
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I201_06043c
2
3
4
5
6
7
8
100s
10-1
s
10-2s
10-3
s
10-4
s
160 A
125 A
80 A
63 A
50 A
100 A
200 A
250 A
[A]
2
s
[A s]
2
rms
© Siemens AG 2016
50 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3NA32, 3NA62, 3NA72 series
Size: 2
Operational class: gG
Rated voltage: 500 V AC/440 V DC
Rated current: 35 ... 400 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
26410
2
8
10-3
2
4
6
10-2
6410
3
82 6410
4
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06085a
50 A
63 A
80 A
100 A
35 A
vs
[A]
[s]
125 A
160 A
200 A
224 A
250 A
300/315 A
355 A
400 A
ef
102264108
10
160 A
100 A
2
4
6
3
125 A
50 A
35 A
c
[A]
[A]
104
2
32641084264108524
80 A
63 A
I2_06060a
4
200 A
224 A
250 A
6
300/315 A
355 A
400 A
12
ef
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3214, 3NA6214, 3NA7214 35 3.2 12 3000 3300
3NA3220, 3NA6220, 3NA7220 50 4.7 16 6000 6800
3NA3222, 3NA6222, 3NA7222 63 5.9 16 7700 9800
3NA3224, 3NA6224, 3NA7224 80 6.8 21 12000 16000
3NA3230, 3NA6230, 3NA7230 100 7.4 22 24000 30600
3NA3232, 3NA6232, 3NA7232 125 9.8 27 36000 50000
3NA3236, 3NA6236, 3NA7236 160 12.6 34 58000 85000
3NA3240, 3NA6240, 3NA7240 200 14.9 33 115000 135000
3NA3242, 3NA6242, 3NA7242 224 15.4 31 145000 170000
3NA3244, 3NA6244, 3NA7244 250 17.9 38 205000 230000
3NA3250, 3NA6250 300 19.4 34 361000 433000
3NA3252, 3NA6252, 3NA7252 315 21.4 35 361000 433000
3NA3254, 3NA6254 355 26.0 49 441000 538000
3NA3260, 3NA6260, 3NA7260 400 27.5 52 529000 676000
Type I2ta
230 V AC 400 V AC 500 V AC
A2s A2s A2s
3NA3214, 3NA6214, 3NA7214 4900 6750 9300
3NA3220, 3NA6220, 3NA7220 9100 11600 16000
3NA3222, 3NA6222, 3NA7222 14200 19000 26500
3NA3224, 3NA6224, 3NA7224 23100 30700 43000
3NA3230, 3NA6230, 3NA7230 40800 56200 80000
3NA3232, 3NA6232, 3NA7232 70000 91300 130000
3NA3236, 3NA6236, 3NA7236 120000 158000 223000
3NA3240, 3NA6240, 3NA7240 218000 285000 400000
3NA3242, 3NA6242, 3NA7242 299000 392000 550000
3NA3244, 3NA6244, 3NA7244 420000 551000 780000
3NA3250, 3NA6250 670000 901 000 1275000
3NA3252, 3NA6252, 3NA7252 670000 901000 1275000
3NA3254, 3NA6254 800000 1060000 1500000
3NA3260, 3NA6260, 3NA7260 1155000 1515000 2150000
ef
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06079b
3
1
4
5
6
7
8
9
160 A
125 A
80 A
63 A
50 A
100 A
35 A
100s
10-1
s
10-2s
10-3
s
10-4
s
200 A
224 A
250 A
300/315 A
355 A
400 A
[A]
2s[A s]
2
© Siemens AG 2016
51
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA32..-6, 3NA62..-6, 3NA72..-6 series
Size: 2
Operational class: gG
Rated voltage: 690 V AC1)/440 V DC
Rated current: 80 ... 315 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
1) Manufacturer's confirmation for 690 V +10 % rated voltage available on
request.
ef
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_07539a
6105
8
250 A
224 A
200 A
160 A
125 A
100 A
80 A
300/315 A
vs
[A]
[s]
1 0 2264 1 08
1 0
2
4
6
1 6 0 A
1 0 0 A
2
4
6
4
1 2 5 A
c
e f f
[ A ]
[ A ]
1 0 5
1 0 3
3264 1 08 4264 1 08 524
8 0 A
I 2 _ 0 7 5 4 0 a
2 0 0 A
2 2 4 A
2 5 0 A
12
3 1 5 A
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3224-6, 3NA6224-6, 3NA7224-6 80 6.6 22 13500 17000
3NA3230-6, 3NA6230-6, 3NA7230-6 100 8.5 26 21200 30500
3NA3232-6, 3NA6232-6, 3NA7232-6 125 9.8 29 36000 50000
3NA3236-6, 3NA6236-6, 3NA7236-6 160 13.3 31 58000 85000
3NA3240-6, 3NA6240-6, 3NA7240-6 200 16.1 33 132000 144000
3NA3242-6, 3NA6242-6, 3NA7242-6 224 19.9 38 125000 162000
3NA3244-6, 3NA6244-6, 3NA7244-6 250 23 44 180000 215000
3NA3250-6, 3NA6250-6, 3NA7250-6 300 25.6 38 300000 380000
3NA3252-6, 3NA6252-6, 3NA7252-6 315 28.2 42 300000 380000
Type I2ta
230 V AC 400 V AC 690 V AC
A2s A2s A2s
3NA3224-6, 3NA6224-6, 3NA7224-6 24300 32000 55000
3NA3230-6, 3NA6230-6, 3NA7230-6 42400 52000 75000
3NA3232-6, 3NA6232-6, 3NA7232-6 69500 82200 130000
3NA3236-6, 3NA6236-6, 3NA7236-6 120000 155000 223000
3NA3240-6, 3NA6240-6, 3NA7240-6 211000 240000 360000
3NA3242-6, 3NA6242-6, 3NA7242-6 300000 300000 450000
3NA3244-6, 3NA6244-6, 3NA7244-6 453000 350000 525000
3NA3250-6, 3NA6250-6, 3NA7250-6 480000 625000 940000
3NA3252-6, 3NA6252-6, 3NA7252-6 480000 625000 940000
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_07541a
3
4
5
6
7
8
9
160 A
125 A
80 A
100 A
200 A
100s
10-1
s
10-2s
10-3
s
10-4
s
240 A
250 A
300/315 A
[A]
2s[A s]
2
ef
© Siemens AG 2016
52 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3NA33 series
Size: 3
Operational class: gG
Rated voltage: 500 V AC/440 V DC
Rated current: 200 ... 630 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
4
6
102
2
4
6
103
2
4
6
104
I2_06051a
630 A
500 A
425 A
400 A
355 A
300/315 A
250 A
224 A
vs[s]
200 A
103264108
10
4
6
2
4
6
4
c
[A]
[A]
105
426410852641086
I2_06061a
200 A
250 A
300/315 A
355 A
400 A
425 A
500 A
630 A
12
224 A
ef
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3340 200 14.9 32 115000 135000
3NA3342 224 15.4 31 145000 170000
3NA3344 250 17.9 36 205000 230000
3NA3350 300 19.4 19 361000 433000
3NA3352 315 21.4 22 361000 433000
3NA3354 355 26.0 26 441000 538000
3NA3360 400 27.5 28 529000 676000
3NA3362 425 26.5 34 650000 970000
3NA3365 500 36.5 41 785000 1270000
3NA3372 630 44.0 50 1900000 2700000
Type I2ta
230 V AC 400 V AC 500 V AC
A2s A2s A2s
3NA3340 218000 285000 400000
3NA3342 299000 392000 550000
3NA3344 420000 551000 780000
3NA3350 670000 901000 1275000
3NA3352 670000 901000 1275000
3NA3354 800000 1060000 1500000
3NA3360 1155000 1515000 2150000
3NA3362 1515000 1856000 2270000
3NA3365 1915000 2260000 2700000
3NA3372 3630000 4340000 5400000
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06070b
3
4
5
6
7
8
9
630 A
250 A
500 A
425 A
400 A
355 A
300/315 A
[A]
2s[A s]
2
100s
10-1
s
10-2s
10-3
s
10-4s
224 A
200 A
ef
© Siemens AG 2016
53
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA33..-6 series
Size: 3
Operational class: gG
Rated voltage: 690 V AC1)/440 V DC
Rated current: 250 ... 500 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
1) Manufacturer's confirmation for 690 V +10 % rated voltage available on
request.
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_07542a
6105
8
425 A
400 A
355 A
315 A
250 A
500 A
vs
[A]
[s]
ef
ef
10
10
2
4
6
5
c
[A]
[A]
10442
648 64108524
I2_07543a
250 A
355 A
12
315 A
400 A
425 A
500 A
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3344-6 250 23 44 180000 215000
3NA3352-6 315 28.2 42 300000 380000
3NA3354-6 355 32.5 40 380000 470000
3NA3360-6 400 33.2 42 540000 675000
3NA3362-6 425 35.3 44 625000 765000
3NA3365-6 500 43.5 52 810000 1000000
Type I2ta
230 V AC 400 V AC 690 V AC
A2s A2s A2s
3NA3344-6 453000 350000 525000
3NA3352-6 480000 625000 940000
3NA3354-6 585000 760000 1150000
3NA3360-6 847000 1100000 1650000
3NA3362-6 925000 1200000 1800000
3NA3365-6 1300000 1700000 2500000
ef
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_07544a
3
4
5
6
7
8
9
100
s
10-1
s
10-2
s
10-3
s
10-4
s
355 A
315 A
250 A
400 A
500 A
[A]
2s[A s]
2
425 A
© Siemens AG 2016
54 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3NA34 series
Size: 4 (IEC design)
Operational class: gG
Rated voltage: 500 V AC/440 V DC
Rated current: 630 ... 1250 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
ef
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_07549a
6105
8
1250 A
1000 A
800 A
630 A
[A]
[s]
103264108
10
2
4
6
4
c
[A]
[A]
105
2
42641085
I2_07550a
4
6
630 A
12
800 A
1000 A
1250 A
246810
6
ef
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3472 630 47 37 1900000 2700000
3NA3475 800 59 43 3480000 5620000
3NA3480 1000 74 56 7920000 10400000
3NA3482 1250 99 65 11880000 18200000
Type I2ta
230 V AC 400 V AC 500 V AC
A2s A2s A2s
3NA3472 3630000 4340000 5400000
3NA3475 7210000 8510000 10400000
3NA3480 13600000 16200000 19000000
3NA3482 23900000 29100000 34800080
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_07556b
4
5
6
7
8
9
10
1250 A
1000 A
10-3
s
10-4
s
10-2
s
10-1
s
100
s
800 A
630 A
[A]
2s[A s]
2
ef
© Siemens AG 2016
55
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA36 series
Size: 4a
Operational class: gG
Rated voltage: 500 V AC/440 V DC
Rated current: 500 ... 1250 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06049a
6105
8
1250 A
1000 A
800 A
630 A
500 A
vs
[A]
[s]
ef
103264108
10
2
4
6
4
c
[A]
[A]
105
2
42641085
I2_06057a
4
6
800 A
1000 A
1250 A
246810
6
500 A
12
630 A
ef
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA3665 500 43 30 785000 1270000
3NA3672 630 47 37 1900000 2700000
3NA3675 800 59 43 3480000 5620000
3NA3680 1000 74 56 7920000 10400000
3NA3682 1250 99 65 11880000 18200000
Type I2ta
230 V AC 400 V AC 500 V AC
A2s A2s A2s
3NA3665 1915000 2260000 2700000
3NA3672 3630000 4340000 5400000
3NA3675 7210000 8510000 10400000
3NA3680 13600000 16200000 19000000
3NA3682 23900000 29100000 34800000
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06073b
4
5
6
7
8
9
10
500 A
10-4
s
10-3
s
10-2s
10-1
s
100s
630 A
1000 A
1250 A
800 A
[A]
2s[A s]
2
ef
© Siemens AG 2016
56 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3NA38, 3NA68, 3NA78 series
Size: 000, 00
Operational class: gG
Rated voltage: 500 V AC/250 V DC
Rated current: 2 ... 160 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
Table see page 57.
26410
1
8
10-3
2
4
6
10-2
6410
2
82 6410
3
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06197b
10 A
6 A
2 A
16 A
20 A
25 A
32 A
35 A
40 A
50 A
63 A
80 A
100 A
125 A
160 A
4 A
vs
[A]
[s]
ef
102264108
10
2
4
6
160 A
100 A
2
4
6
3
40 A
32 A
20 A
10 A
4 A
125 A
50 A
35 A
25 A
16 A
6 A
2 A
c
ef [A]
[A]
104
2
10232641084264108524
12
80 A
63 A
I2_06056a
261010 4
126410
2
82 6410
3
84
82 61045
8
10
2
4
6
160 A
125 A
100 A
80 A
63 A
50 A
40 A
35 A
32 A
25 A
20 A
16 A
10 A
4 A
2 A
100s
10-1
s
10-2s
10-3
s
10-4
s
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06080b
6 A
[A]
2s[A s]
2
0
1
2
3
4
5
6
ef
© Siemens AG 2016
57
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA38, 3NA68, 3NA78 series
Size: 000, 00
Operational class: gG
Rated voltage: 500 V AC/250 V DC
Rated current: 2 ... 160 A
Type InPv I2tsI2ta
1ms 4ms 230 V AC 400 V AC 500 V AC
A W K A2s A2s A2s A2s A2s
3NA3802, 3NA6802, 3NA7802 21.3 8 2 2 4 6 9
3NA3804, 3NA6804, 3NA7804 40.9 611 13 18 22 27
3NA3801, 3NA6801, 3NA7801 61.3 846 50 80 110 150
3NA3803, 3NA6803, 3NA7803 10 1 8 120 130 180 265 370
3NA3805, 3NA6805, 3NA7805 16 1.7 11 370 420 580 750 1000
3NA3807, 3NA6807, 3NA7807 20 215 670 750 1000 1370 1900
3NA3810, 3NA6810, 3NA7810 25 2.3 17 1200 1380 1800 2340 3300
3NA3812, 3NA6812, 3NA7812 32 2.6 18 2200 2400 3400 4550 6400
3NA3814, 3NA3814-7, 3NA6814, 3NA7814 35 2.7 21 3000 3300 4900 6750 9300
3NA3817, 3NA6817, 3NA7817 40 3.1 24 4000 4500 6100 8700 12100
3NA3820, 3NA3820-7, 3NA6820, 3NA7820 50 3.8 25 6000 6800 9100 11 600 16000
3NA3822, 3NA3822-7, 3NA6822, 3NA7822 63 4.6 28 7700 9800 14200 19000 26500
3NA3824, 3NA3824-7, 3NA6824,
3NA6824-7, 3NA7824, 3NA7824-7
80 5.8 33 12000 16000 23100 30700 43000
3NA3830, 3NA3830-7, 3NA6830,
3NA6830-7, 3NA7830, 3NA7830-7
100 6.6 34 24000 30600 40800 56200 80000
3NA3832, 3NA6832, 3NA7832 125 8.9 44 36000 50000 70000 91300 130000
3NA3832-8 125 7.2 30 46000 45000 97000 117000 134000
3NA3836, 3NA6836, 3NA7836 160 11.3 52 58000 85000 120000 158000 223000
3NA3836-8 160 934 89000 84800 137000 166000 --
© Siemens AG 2016
58 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3NA38..-6, 3NA68..-6, 3NA78..-6 series
Size: 000, 00
Operational class: gG
Rated voltage: 690 V AC1)/250 V DC
Rated current: 2 ... 100 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
1) Manufacturer's confirmation for 690 V +10 % rated voltage available on
request.
26410
1
8
10-3
2
4
6
10-2
6410
2
82 6410
3
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06052a
10 A
16 A
20 A
25 A
32 A
35 A
2 A
4 A
6 A
80 A
100 A
50 A
63 A
40 A
vs
[A]
[s]
ef
1 0 2264 1 08
1 0
6
2
4
6
c
e f f
[ A ]
[ A ]
1 0
3264 1 08 4264 1 08 524
I 2 _ 0 6 0 5 9 a
2
3
2
4
6
1 0 4
2
121 0 0 A
8 0 A
5 0 A
2 A
4 A
6 A
1 0 A
1 6 A
2 0 A
2 5 A
4 0 A
3 2 A
6 3 A
3 5 A
261010 4
126410
2
82 6410
3
84
82 61045
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06076b
0
1
2
3
4
5
6
2 A
100s
10-1
s
10-2s
10-3
s
10-4s
4 A
6 A
10 A
16 A
20 A
25 A
32 A
35 A
40 A
50 A
63 A
80 A
100 A
[A]
2s[A s]
2
ef
© Siemens AG 2016
59
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
Type InPv I2tsI2ta
1ms 4ms 230 V AC 400 V AC 690 V AC
A W K A2s A2s A2s A2s A2s
3NA3802-6, 3NA6802-6, 3NA7802-6 21.3 8 2 2 4 6 9
3NA3804-6, 3NA6804-6, 3NA7804-6 40.9 611 13 18 22 27
3NA3801-6, 3NA6801-6, 3NA7801-6 61.3 836 44 80 110 150
3NA3803-6, 3NA6803-6, 3NA7803-6 10 1 8 90 120 180 265 370
3NA3805-6, 3NA6805-6, 3NA7805-6 16 1.7 11 330 360 580 750 1000
3NA3807-6, 3NA6807-6, 3NA7807-6 20 215 570 690 1000 1370 1900
3NA3810-6, 3NA6810-6, 3NA7810-6 25 2.3 17 1200 1380 1800 2340 3300
3NA3812-6, 3NA6812-6, 3NA7812-6 32 3.1 19 1600 2600 3100 4100 5800
3NA3814-6, 3NA6814-6, 3NA7814-6 35 3.6 23 2100 3100 4000 5000 7800
3NA3817-6, 3NA6817-6, 3NA7817-6 40 3.6 18 3200 4700 6000 8600 12000
3NA3817-6KJ, 3NA6817-6KJ, 3NA7817-6KJ 40 3.8 18 3800 4700 6000 8600 15000
3NA3820-6, 3NA6820-6, 3NA7820-6 50 4.9 28 4400 7400 9100 11200 19000
3NA3820-6KJ, 3NA6820-6KJ, 3NA7820-6KJ 50 4.9 28 5900 7400 9100 11200 19000
3NA3822-6, 3NA6822-6, 3NA7822-6 63 5.7 33 7600 10100 13600 17000 24000
3NA3824-6, 3NA6824-6, 3NA7824-6 80 6.7 38 13500 17000 24300 32000 55000
3NA3830-6, 3NA6830-6, 3NA7830-6 100 9.1 40 21200 30500 42400 52000 75000
© Siemens AG 2016
60 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3NA61..-4 series
Size: 1
Operational class: gG
Rated voltage: 400 V AC
Rated current: 35 ... 250 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
26410
2
8
10-3
2
4
6
10-2
6410
3
82 6410
4
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_11418
35 A
40 A
50 A
63 A
80 A
100 A
125 A
160 A
vs
[A]
[s]
200 A
224 A
250 A
ef
102264108
10
2
4
6
2
4
6
4
c
[A]
[A]
105
10332641084264108524
I2_11419
63 A
100 A
160 A
250 A
224 A
200 A
125 A
80 A
12
40 A
50 A
35 A
Type InPv
A W K
3NA6114-4 35 3.2 16
3NA6117-4 40 3.6 16
3NA6120-4 50 4.6 20
3NA6122-4 63 6.0 21
3NA6124-4 80 7.5 29
3NA6130-4 100 8.9 30
3NA6132-4 125 10.7 31
3NA6136-4 160 13.9 34
3NA6140-4 200 15.0 36
3NA6142-4 224 16.1 37
3NA6144-4 250 17.3 39
Type I2tsI2ta
1ms 4ms 230 V AC 400 V AC
A2s A2s A2s A2s
3NA6114-4 3000 3300 4900 6750
3NA6117-4 4000 4500 6100 8700
3NA6120-4 6000 6800 9100 11600
3NA6122-4 7700 9800 14200 19000
3NA6124-4 12000 16000 23100 30700
3NA6130-4 24000 30600 40800 56200
3NA6132-4 36000 50000 70000 91300
3NA6136-4 58000 85000 120000 158000
3NA6140-4 115000 135000 218000 285000
3NA6142-4 145000 170000 299000 392000
3NA6144-4 205000 230000 420000 551000
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_11420
[A]
2s[A s]
2
2
3
4
5
6
7
8
35 A
40 A
50 A
100 A
125 A
160 A
200 A
224 A
250 A
63 A
80 A
10-4
s
10-3
s
10-2
s
10-1
s
100
s
ef
© Siemens AG 2016
61
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3NA62..-4 series
Size: 2
Operational class: gG
Rated voltage: 400 V AC
Rated current: 50 ... 400 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
264 1 0
2
8
1 0
- 3
2
4
6
1 0
- 2
64 1 0
3
8 2 64 1 0
4
8 2 4
2
4
6
1 0
- 1
2
4
6
1 0
0
2
4
6
1 0
1
2
4
6
1 0
2
2
4
6
1 0
3
2
4
6
1 0
4
I 2 _ 1 1 4 2 1
v s
e f f [ A ]
[ s ]
5 0 A
6 3 A
8 0 A
1 0 0 A
1 2 5 A
1 6 0 A
2 0 0 A
2 2 4 A
2 5 0 A
3 1 5 A
3 5 5 A
4 0 0 A
102264108
10
2
4
6
2
4
6
4
c
[A]
[A]
105
10332641084264108524
I2_11422
12
50 A
63 A
100 A
160 A
400 A
355 A
300/315 A
250 A
224 A
200 A
125 A
80 A
ef
Type InPv
A W K
3NA6220-4 50 4.7 16
3NA6222-4 63 5.9 16
3NA6224-4 80 6.8 21
3NA6230-4 100 7.4 22
3NA6232-4 125 9.8 27
3NA6236-4 160 12.6 34
3NA6240-4 200 14.9 33
3NA6242-4 224 15.4 31
3NA6244-4 250 17.9 38
3NA6250-4 300 19.4 34
3NA6252-4 315 21.4 35
3NA6254-4 355 26.0 49
3NA6260-4 400 27.5 52
Type I2tsI2ta
1ms 4ms 230 V AC 400 V AC
A2s A2s A2s A2s
3NA6220-4 6000 6800 9100 11600
3NA6222-4 7700 9800 14200 19000
3NA6224-4 12000 16000 23100 30700
3NA6230-4 24000 30600 40800 56200
3NA6232-4 36000 50000 70000 91300
3NA6236-4 58000 85000 120000 158 000
3NA6240-4 115000 135000 218000 285000
3NA6242-4 145000 170000 299000 392000
3NA6244-4 205000 230000 420000 551000
3NA6250-4 361000 433000 670000 901000
3NA6252-4 361000 433000 670000 901000
3NA6254-4 441000 538000 800000 1060000
3NA6260-4 529000 676000 1155000 1515000
2 6 1 01 0 4
2264 1 0 3
8 2 64 1 0 4
85
8 2 6 1 04 6
8
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
I 2 _ 1 1 4 2 3
e f f
[ A ]
2s
[ A s ]
2
2
3
4
5
6
7
8
1 0 - 4 s
1 0 - 3 s
1 0 - 2 s
1 0 - 1 s
1 0 0s
5 0 A
6 3 A
8 0 A
1 0 0 A
1 2 5 A
1 6 0 A
2 0 0 A
2 2 4 A
2 5 0 A
3 1 5 A
3 5 5 A
4 0 0 A
© Siemens AG 2016
62 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3NA68..-4/-4KK series
Size: 000, 00
Operational class: gG
Rated voltage: 400 V AC
Rated current: 10 ... 160 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
ef
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_11415
6104
8
vs
[A]
[s]
10 A
16 A
20 A
25 A
32 A
35 A
40 A
50 A
63 A
80 A
100 A
125 A
160 A
102264108
10
2
4
6
160 A
100 A
2
4
6
3
40 A
32 A
20 A
10 A
125 A
50 A
35 A
25 A
16 A
c
[A]
[A]
104
2
32641084264108524
80 A
63 A
I2_11416
12
ef
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3NA6803-4 10 1.0 8120 130
3NA6805-4 16 1.7 11 370 420
3NA6807-4 20 2.0 15 670 750
3NA6810-4 25 2.3 17 1200 1380
3NA6812-4 32 2.6 18 2200 2500
3NA6814-4 35 2.7 21 3000 3300
3NA6817-4 40 3.1 24 4000 4500
3NA6820-4 50 3.8 25 6000 6800
3NA6822-4 63 3.9 23 9300 10250
3NA6824-4, 3NA6824-4KK 80 4.9 26 14200 18300
3NA6830-4, 3NA6830-4KK 100 5.4 29 25600 33600
3NA6832-4 125 8.9 44 36000 50000
3NA6836-4 160 11.3 52 58000 85 000
Type I2ta
230 V AC 400 V AC
A2s A2s
3NA6803-4 180 265
3NA6805-4 580 750
3NA6807-4 1000 1370
3NA6810-4 1800 2340
3NA6812-4 3400 4550
3NA6814-4 4900 6750
3NA6817-4 6100 8700
3NA6820-4 9100 11600
3NA6822-4 12400 17900
3NA6824-4, 3NA6824-4KK 27000 38000
3NA6830-4, 3NA6830-4KK 48300 69200
3NA6832-4 70000 91300
3NA6836-4 120000 158000
261010 4
126410
2
82 6410
3
84
82 61045
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_11417
[A]
2s[A s]
2
1
2
3
4
5
6
7
10-4
s
10-3
s
10-2
s
10-1
s
100
s
10 A
16 A
20 A
25 A
32 A
35 A
40 A
50 A
63 A
80 A
100 A
125 A
160 A
eff
© Siemens AG 2016
63
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3ND18 series
Size: 000, 00
Operational class: aM
Rated voltage: 500 V AC
Rated current: 6 ... 160 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
I2_06046a
6104
8
6 A
20 A
25 A
80 A
100 A
125 A
160 A
32 A
40 A
63 A
50 A
16 A
10 A
35 A
vs
[A]
[s]
ef
102264108
10
2
4
6
100 A
2
4
6
3
40 A
32 A
20 A
10 A
125 A
50 A
35 A
25 A
16 A
6 A
c
[A]
[A]
104
2
32641084264108524
80 A
63 A
I2_06065a
160 A
12
ef
Type InPv I2ts
1ms 4ms
A W K A2s A2s
3ND1801 60.8 732 55
3ND1803 10 0.5 5150 260
3ND1805 16 0.8 7570 800
3ND1807 20 1 8 830 1200
3ND1810 25 1.2 91400 2000
3ND1812 32 1.5 10 2300 3300
3ND1814 35 1.8 11 2600 3800
3ND1817 40 212 3700 5500
3ND1820 50 2.4 14 5800 8400
3ND1822 63 3.3 17 9300 13000
3ND1824 80 4.5 20 15000 21000
3ND1830, 3ND1830-8 100 4.9 18 26000 37000
3ND1832 125 6.3 22 41000 60000
3ND1836 160 9.3 31 64000 92000
Type I2ta
230 V AC 400 V AC 500 V AC
A2s A2s A2s
3ND1801 60 75 110
3ND1803 280 320 430
3ND1805 1000 1300 1600
3ND1807 1300 1600 2200
3ND1810 2200 2800 3300
3ND1812 3800 4500 5400
3ND1814 4200 5100 6300
3ND1817 5700 7200 9300
3ND1820 5200 10500 12500
3ND1822 15000 16500 21 000
3ND1824 21500 27000 34 000
3ND1830, 3ND1830-8 44000 56000 76 000
3ND1832 76000 98000 135000
3ND1836 105000 130000 170000
261010 4
126410
2
82 6410
3
84
82 61045
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06067b
1
2
3
4
5
6
7
100s
10-1
s
10-2s
10-3
s
10 A
6 A
16 A
20 A
25 A
32 A
35 A
40 A
50 A
63 A
80 A
100 A
125 A
160 A
[A]
2s[A s]
2
ef
© Siemens AG 2016
64 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
3ND13.., 3ND2 series
Size: 1, 2, 3
Operational class: aM
Rated voltage: 690 V AC
Rated current: 63 ... 630 A
Time/current characteristics diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
Melting I2t values diagram
Table see page 65.
ef
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
I2_06413b
6105
8
80 A
100 A
125 A
160 A
63 A
200 A
250 A
315 A
355 A
400 A
500 A
630 A
vs
[A]
[s]
103264108
2
4
2
4
6
c
[A]
[A]
105
426410852641086
I2_06066a
6
104
160 A
100 A
125 A
80 A
355 A
400 A
500 A
630 A
315 A
250 A
200 A
63 A
12
ef
261010 4
226410
3
82 6410
4
85
82 61046
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_06064b
3
4
5
6
7
8
9
63 A
80 A
100 A
125 A
160 A
200 A
250 A
355 A
400 A
500 A
630 A
[A]
2s[A s]
2
100s
10-1
s
10-2s
10-3
s
10-4
s
315 A
ef
© Siemens AG 2016
65
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
3ND13.., 3ND2 series
Size: 1, 2, 3
Operational class: aM
Rated voltage: 690 V AC
Rated current: 63 ... 630 A
Type InPv I2tsI2ta
1ms 4ms 230 V AC 400 V AC 690 V AC
A W K A2s A2s A2s A2s A2s
3ND2122 63 412.2 14000 17700 19 300 25600 42000
3ND2124 80 4.9 13 24200 30800 36500 48000 80000
3ND2130 100 5.8 15 45600 59000 65 000 85000 140000
3ND2132 125 8.1 16.5 57000 74300 73 000 97000 160000
3ND2136 160 11.4 18 90000 114000 107000 142 000 235000
3ND2140 200 14.1 19.5 150000 198000 172000 228000 375000
3ND2144 250 18 22 250000 313000 260000 340 000 565000
3ND2232 125 8.1 16.5 57000 74300 73 000 97000 160000
3ND2236 160 11.4 18 90000 114000 107000 142 000 235000
3ND2240 200 14.1 19.5 150000 198000 172000 228000 375000
3ND2244 250 18 22 250000 313000 260000 340000 565000
3ND2252 315 22.6 30 370000 450000 460000 610000 1000000
3ND2254 355 24.7 29 540000 643000 645000 855000 1400000
3ND2260 400 30.8 35 615000 750000 688000 910000 1500000
3ND2352 315 22.6 30 370000 450000 460000 610000 1000000
3ND2354 355 24.7 29 540000 643000 645000 855000 1400000
3ND2360 400 30.8 26 615000 750000 688000 910000 1500000
3ND1365 500 47 40 730000 933000 876000 1095000 1825000
3ND1372 630 50 43 920000 1375000 1300000 1800000 2600000
© Siemens AG 2016
66 Siemens · 10/2015
LV HRC fuse links
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
Dimensional drawings
LV HRC fuse links, operational class gG
Size InUnType Dimensions
A V b h1h2t1t2
Sizes 000 to 3 and 4a 000 2 ... 35 690 AC/250 DC 3NA38..-6 21 54 80 45 8
2 ... 160 500 AC 3NA38../-8
2 ... 100 500 AC/250 DC 3NA68..
10 ... 100 400 AC 3NA68..-4
2 ... 35 690 AC/250 DC 3NA68..-6
10 ... 100 500 AC/250 DC 3NA78..
2 ... 35 690 AC/250 DC 3NA78..-6
00 35 ... 160 500 AC/250 DC 3NA38.. 30 54 80 45 14
40 ... 100 690 AC/250 DC 3NA38..-6
80 ... 160 500 AC/250 DC 3NA68../-7
80 ... 160 400 AC 3NA68..-4 (KK)
40 ... 100 690 AC/250 DC 3NA68..-6
80 ... 160 500 AC/250 DC 3NA78../-7
40 ... 100 690 AC/250 DC 3NA78..-6
Size 4 (IEC design) 0 6 ... 160 500 AC/440 DC 3NA30.. 30 67 126 45 14
116 ... 160 500 AC/440 DC 3NA31.. 30 75 137 50 15
50 ... 160 690 AC/440 DC 3NA31..-6
16 ... 160 500 AC/440 DC 3NA61..
35 ... 160 400 AC 3NA61..-4
50 ... 160 690 AC/440 DC 3NA61..-6
16 ... 160 500 AC/440 DC 3NA71..
50 ... 160 690 AC/440 DC 3NA71..-6
200 ... 250 500 AC/440 DC 3NA31.. 47 75 137 51 9
200 690 AC/440 DC 3NA31..-6
200 ... 250 500 AC/440 DC 3NA61..
200 ... 250 400 AC 3NA61..-4
200 690 AC/440 DC 3NA61..-6
200 ... 250 500 AC/440 DC 3NA71..
200 690 AC/440 DC 3NA71..-6
235 ... 250 500 AC/440 DC 3NA32.. 47 75 151 58 10
80 ... 200 690 AC/440 DC 3NA32..-6
35 ... 250 500 AC/440 DC 3NA62..
50 ... 250 400 AC 3NA62..-4
80 ... 200 690 AC/440 DC 3NA62..-6
35 ... 250 500 AC/440 DC 3NA72..
80 ... 200 690 AC/440 DC 3NA72..-6
300 ... 400 500 AC/440 DC 3NA32.. 58 74 151 59 13
224 ... 250 690 AC/440 DC 3NA32..-6
300 ... 400 500 AC/440 DC 3NA62..
300 ... 400 400 AC 3NA62..-4
224 ... 315 690 AC/440 DC 3NA62..-6
300 ... 400 500 AC/440 DC 3NA72..
224 ... 315 690 AC/440 DC 3NA72..-6
3200 ... 400 500 AC/440 DC 3NA33.. 58 74 151 71 13
250, 315 690 AC/440 DC 3NA33..-6
425 ... 630 500 AC/440 DC 3NA33.. 71 74 151 70 13
355 ... 500 690 AC/440 DC 3NA33..-6
4630 ... 1250 500 AC/440 DC 3NA34.. See adjacent drawing
4a 500 ... 1250 500 AC/440 DC 3NA36.. 102 97 201 95 20
b
1
h2
h
2
t
1
t
I201_10899a
202
I201_11335
65 55
90
102
© Siemens AG 2016
67
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse links
LV HRC fuse links, operational class aM
Size InUnType Dimensions
Sizes 000 to 3 A V b h1h2t1t2
000 6...80 500 AC 3ND18.. 21 54 80 45 8
00 100 ... 160 30 54 80 45 14
163 ... 100 690 AC 3ND21.. 30 75 137 50 15
125 ... 250 47 75 137 51 9
2125 ... 250 690 AC 3ND22.. 47 75 151 58 10
315 ... 400 58 74 151 59 13
3315 ... 400 690 AC 3ND23.. 58 74 151 71 13
500, 630 3ND13.. 71 74 151 70 13
b
1
h2
h
2
t
1
t
I201_10899a
© Siemens AG 2016
68 Siemens · 10/2015
LV HRC signal detectors
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
Overview
LV HRC signal detectors are used for remotely indicating that the
LV HRC fuse links have been tripped. Three different solutions
are available:
3NX1021 signal detectors with signal detector link
The LV HRC signal detectors with signal detector link support
monitoring of LV HRC fuse links with non-insulated grip lugs
of sizes 000 to 4 at 10 A or more. The signal detector link is
connected in parallel to the fuse link. In the event of a fault,
the LV HRC fuse links are released simultaneously with the
LV HRC fuse detector link. A trip pin switches a floating micro-
switch
3NX1024 signal detector tops
The signal detector top can be used with LV HRC fuse links,
sizes 000, 00, 1 and 2, which are equipped with non-insulated
grip lugs and have a front indicator or combination alarm. It is
simply plugged into the grip lugs
5TT3170 fuse monitors
If a fuse is tripped, the front indicator springs open and
switches a floating microswitch. This solution should not be
used for safety-relevant systems. For this purpose, we recom-
mend our electronic fuse monitors
Dimensional drawings
Circuit diagrams
Graphical symbols
LV HRC signal detectors Signal detector links
3NX1021 3NX1022, 3NX1023
Signal detector tops Fuse monitors
3NX1024 5TT3170
115
40
I201_07856a
25
15
I201_07857a
11
7
66
20
32,5
22
53,5
14,5
25,523
I201_12125
I201_11512
90
45
64
43
5
15
L3L2
L1
14
L3L2L1
36
LV HRC signal detectors
Signal detector tops
Fuse monitors
3NX1021
3NX1024
5TT3170
142
NNONC
L3L2 14L1
13
L3'L2'L1'
© Siemens AG 2016
69
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
Overview
Terminals for all applications
Flat terminals with screws are suitable for connecting busbars
or cable lugs. They have a torsion-proof screw connection with
shim, spring washer and nut. When tightening the nut, always
ensure compliance with the specified torque due to the consid-
erable leverage effect.
The double busbar terminal differs from the flat terminal in that it
supports connection of two busbars, one on the top and one at
the bottom of the flat terminal.
The modern box terminal ensures efficient and reliable connec-
tion to the conductors. They support connection of conductors
with or without end sleeve.
With the flat terminal with nut, terminal lug of the nut is torsion-
proof. When tightening the nut, the torque must be observed
because of the considerable leverage effect.
Up to three conductors can be clamped to the terminal strip.
The plug-in terminal is equipped for connecting two conductors. One conductor can be clamped to the saddle-type terminal.
© Siemens AG 2016
70 Siemens · 10/2015
LV HRC fuse bases and accessories
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
Technical specifications
1) Extended rated voltage up to 1000 V (except LV HRC bus-mounting bases).
LV HRC fuse bases, LV HRC bus-mounting bases
Size 000/00 0 1 2 3 4
Standards IEC 60269-1, -2; EN 60269-1; DIN VDE 0636-2, UL 4248-1
(only downstream from the branch protection)
Approvals KEMA, UL File No: E171267-IZLT2
Rated current InA160 160 250 400 630 1250
Rated voltage UnVAC 6901) 6901) 690
VDC 250 440 440
Rated short-circuit strength kA AC 120
kA DC 25
Max. power dissipation of the fuse link W12 25 32 45 60 90
Flat terminal
Screw M8 M10 M12
Nut M8 --
Max. tightening torque Nm 14 38 65
Plug-in terminal
Conductor cross-section mm22.5 ... 50 --
Saddle-type terminal
Conductor cross-section mm26...70 --
Box terminal
Conductor cross-section mm22.5 ... 50
Terminal strips
Conductor cross-section, 3-wire mm21.5 ... 16 --
Max. torque for attachment of LV HRC fuse base Nm 22.5 --
LV HRC fuse bases with swivel mechanism
Size 000/00 1 3 4a
Rated voltage UnVAC 690
VDC 440
Max. power dissipation of the fuse link W12 32 48 110
Flat terminal
Screw M8 M10 M12 M16
Nut M8 --
Max. tightening torque Nm 14 38 65
© Siemens AG 2016
71
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
Dimensional drawings
LV HRC fuse bases made of molded plastic
LV HRC fuse bases made of ceramic
Size 000/00, 1P
3NH3051 to 3NH3053
Size InPoles Connections Type b1b2h1h2h3h4h5h6l t1t2t3t4
A
000/00 160 1P M8 flat terminal, screw 3NH3051 23 39 61 61 25 101 121 139 7.5 26 42 61 86
Saddle-type terminal 3NH3052 -- 39 60 60 25 108 120 139 7.5 26 42 61 86
125 Box terminals 3NH3053 -- 39 59 50 25 99 117 139 7.5 23 39 61 86
h4
h5
h6
h1h3
h2
b2
b1t2t3
t1
t4
4,5
øl
3NX2023
partition
I201_15447
Size 000/00
1P 3P
3NH303., 3NH3050 3NH403.
Size InPoles Connections Type b1b2b3h1h2h3h4h5h6 l t1t2t3t4
A
000/00 160 1P Flat terminal, screw 3NH3030 23 34 -- 61 61 25 102 122 139 7.5 24 40 60 86
M8 plug-in terminal 3NH3031 31 34 -- 64 64 25 102 128 139 7.5 24 40 60 86
Saddle-type terminal 3NH3032 29 34 -- 61 61 25 109 122 139 7.5 24 40 60 86
Flat terminal, terminal strip 3NH3035 26 34 -- 61 70 25 113 130 139 7.5 24 40 60 86
Flat terminal, nut 3NH3038 23 34 -- 61 61 25 102 122 139 7.5 24 40 60 86
Flat and saddle-type
terminals
3NH3050 29 34 -- 61 61 25 102 122 139 7.5 24 40 60 86
3P Flat terminal 3NH4030 23 102 70 61 61 25 102 122 139 7.5 24 40 60 86
M8 plug-in terminal 3NH4031 31 102 70 64 64 25 102 128 139 7.5 24 40 60 86
Saddle-type terminal 3NH4032 29 102 70 61 61 25 102 122 139 7.5 24 40 60 86
Flat terminal, terminal strip 3NH4035 26 102 70 61 70 25 113 130 139 7.5 24 40 60 86
t2t3
t1
t4
h4
h5
h6
h1h3
h2
b2
b1
øl
3NX2023
partition
I201_15449
b2
b1
h4
h5
h6
b3
h1h3
h2
t2t3
t1
t4
øl
I2_15448
© Siemens AG 2016
72 Siemens · 10/2015
LV HRC fuse bases and accessories
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
Size 0, 1P
3NH312.
t2t3
t1
t4
h4
h5
h6
h1h3
h2
b2
b1
øl
3NX2030
partition
I201_15450
Size InPoles Connections Type b1b2h1h2h3h4h5h6l t1t2t3t4
A
0160 1P Flat terminal 3NH3120 23 38 87 87 25 150 173 179 7.5 24 40 60 88
Plug-in terminal 3NH3122 31 38 87 87 25 150 173 179 7.5 24 40 60 88
Size 1
1P 3P
3NH32.0 3NH4230
Size InPoles Connections Type b1b2b3h1h2h3h4h5h6l t1t2t3t4
A
1250 1P M10 flat terminal 3NH3230 35 49 30 101 101 25 177 202 203 10.5 35 55 84 107
Double busbar terminal 3NH3220 35 49 30 101 101 25 177 202 203 10.5 35 55 84 107
3P M10 flat terminal 3NH4230 35 146 111 101 101 25 177 202 203 10.5 35 55 84 107
b2
b1
h4
h5
h6
b3
h1h3
h2
t2t3
t1
t4
øl 3NX2024
partition
I201_15451
b2
b1
h4
h5
h6
h1h3
h2
t2t3
t1
t4
b3
øl
I2_15452
© Siemens AG 2016
73
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
1) Size 4 LV HRC fuse links are also screwed onto the base.
Size 2
1P
Size 3
1P
3NH33.0 3NH34.0
Size InPoles Connections Type b1b2b3h1h2h3h4h5h6l t1t2t3t4
A
2400 1P M10 flat terminal 3NH3330 35 49 30 113 113 25 202 227 228 10.5 35 55 90 115
Double busbar terminal 3NH3320 35 49 30 113 113 25 202 227 228 10.5 35 55 90 115
3630 1P M12 flat terminal 3NH3430 35 49 30 121 121 25 212 242 242 10.5 35 57 101 130
Double busbar terminal 3NH3420 35 49 30 121 121 25 212 242 242 10.5 35 57 101 130
b2
b1
h4
h5
h6
b3
h1h3
h2
t2t3
t1
t4
øl 3NX2025
partition
I201_15453
b2
b1
h5 = h6
h4
b3
h1h3
h2
øl
t2t3
t1
t4
3NX2026
partition
I201_15454
Size 4, 1P
3NH3530
Size InPoles Connections Type b1b2b3h1h2h3h4h5l t1t2t3
A
41) 1250 1P M12 flat terminal 3NH3530 50 102 30 156 156 25 270 312 13 51 116 144
4a Can only be used in bases with swivel mechanism
øl
h1h3
b2
b1
b3
h5
h4
h2
t2t3
t1
I2_15455
© Siemens AG 2016
74 Siemens · 10/2015
LV HRC fuse bases and accessories
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases with swivel mechanism
Sizes 000/00, 1, 3 and 4a
3NH703., 3NH723., 3NH733., 3NH7520
Size InType a b c d e f l m n o
A
000/00 160 3NH7030,
3NH7031,
3NH7032
49 149 45 86 79 120 17 20
1250 3NH7230,
3NH7231,
3NH7232
69 230 68 119 102.5 177 25 38
3630 3NH7330,
3NH7331,
3NH7332
91 270 96 147 122.5 220.5 30.5 35
4a 1250 3NH7520 116 350 155 218 69 172.5 270 40 18 439
I201_11357b
ao
d
eb
c
ln
m
25
Ø7
Ø13
Ø10,5
30 45
25
f
f25
25
30
f
Drilling plan for sizes
1 and 3
000/00 4a
LV HRC contact covers for LV HRC fuse bases and
LV HRC bus-mounting bases1)
Sizes 000/00 to 3
3NX3105 to 3NX3108, 3NX3114
Size Type a b c d e
000/00 3NX31051) 38 47.5 34 11.5 30
03NX3114 51.5 47.5 34 11.5 30
13NX3106 61.5 57 42.5 35 46
23NX3107 74 65 51 35 46
33NX3108 81.5 77.5 57.5 35 46
1) The 3NX3105 LV HRC contact covers can be used for both LV HRC fuse
bases and LV HRC bus-mounting bases.
LV HRC contact covers for LV HRC bus-mounting bases
3NX3113 for the incoming terminal, dimensional drawing 3NX3105 for the
outgoing terminal, see dimensional drawing above
I201_11365a
cb
d
e
a
50
30
I201_11368
11,5
3NX3115 LV HRC protective covers, with 3NX3116 LV HRC covers
Size 000/00, degree of protection IP2X
33 69
141
13
I201_11366
© Siemens AG 2016
75
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
LV HRC partitions for LV HRC fuse bases
Size 000/00
3NX2023
Sizes 0 to 3
3NX2030, 3NX2024 to 3NX2026
Size Type a b c d
03NX2030 87.6 178.5 7.7 12.3
13NX2024 107.3 202.5 7.7 12.3
23NX2025 115.3 227.5 14.2 25.1
33NX2026 129.8 242 20.2 37.2
138,5
866,2
1,65
3,5 16,1
36,5
31
I201_06492a
Spacer
Barrier
b
a
14,3
c
1,6
d
41,3
55,8
35
I201_06493a
Spacer
Partition
LV HRC partitions for LV HRC bus-mounting bases
Size 000/00
Phase barrier End barrier For LV HRC bus-mounting bases in tandem design
3NX2027 3NX2028 3NX2031
114
82
I201_06499a
114
87
I201_06502b
230
81,5
I201_06684a
© Siemens AG 2016
76 Siemens · 10/2015
LV HRC fuse bases and accessories
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
Fuse pullers
Sizes 000 to 4
3NX1013 (without sleeve), 3NX1014 (with sleeve)
27,5
47,5
68
125
130
24
66
136
350
92,5
26
I2_06503a
Stulpe
Isolating blades with insulated grip lugs
Sizes 000/00 to 3
3NG1.02
a
e
d
I2_06490
g
b
h
c
3,5
13
6
f
Size Type a b c d e f g h
000/00 3NG1002 44 15 48 78 54 20.5 819
03NG1102 60.5 15 48 125 68 20.5 819
13NG1202 61 20 53 135 72 23 924
23NG1302 61 26 61 150 72 23 929
33NG1402 61 32 73 150 72 23 936
Isolating blades with non-insulated grip lugs
Size 4 Size 4a
3NG1503 3NG1505
I2_06511a
8
68
200
30
150
16
61
32
50
85
105
50
85
105
9
6
40 53,5
88
197
I2_06685a
© Siemens AG 2016
77
Siemens · 10/2015
Fuse Systems
3NA, 3ND LV HRC Fuse Systems
LV HRC fuse bases and accessories
More information
Space requirements when installing LV HRC fuse bases
1) This measurement specifies the required overall mounting depth with base
d and the overall mounting height h.
2) Placing an additional base on the barrier and plug-on part does not
increase the distance, rather the bases lie flat directly on top of one
another.
3) If the bases are installed directly on a side wall in the distribution
board, one spacer part can be broken off. This would reduce the
distance measurement.
SITOR semiconductor fuses for 3NH bases:
3NH bases are generally suitable for all LV HRC type fuses.
SITOR semiconductor fuses in LV HRC design can also be
used, although it must be noted that, compared to cable and
line protection fuses, these get much hotter during operation.
The following table shows the permissible load currents of the
SITOR semiconductor fuses for installation in 3NH.
For this reason, the fuse must be operated below In when
installed in a base (derating).
The values were determined using the conductor cross-sec-
tions specified in the table. If using smaller cross-sections,
a considerably higher derating is required due to the lower heat
dissipation.
For further information on the assignment of SITOR semiconduc-
tor fuses to the fuse bases and safety switching devices, please
refer to the tables on page 85 ff.
1 LV HRC fuse base, 3P 3 LV HRC fuse base, 1P LV HRC partition
Size Mounting width (mm) of LV HRC fuse bases Mounting
height (mm)
Mounting
depth (mm)
1 unit, 3P 3 units, 1P Distance
through spacer
3NX20.. partitions with
matching bases1)
Bases with phase
barrier, without end
barrier
Bases with phase
barrier and 2 end
barriers
Bases with phase
barrier, without end
barrier
Bases with phase
barrier and 2 end
barriers
h t
000/00 102 106 100 1042) 2138 86
0-- -- 128 142 7178 90
1163 177 158 172 7202 110
2-- -- 184 224 203) 227 118
3-- -- 208 272 323) 242 132
4Installation without barriers; for mounting, see page 75 Not available
4a Can only be used in bases with swivel mechanism Not available
I2_11361
I2_11362
h
t
Partition
Spacer
I201_11363a
© Siemens AG 2016
78 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
Overview
SITOR semiconductor fuses protect power semiconductors from
the effects of short circuits because the super quick-response
disconnect characteristic is far quicker than with conventional
LV HRC fuses. They protect high-quality devices and system
components, such as converters with fuses in the input and the
DC link, UPS systems and soft starters for motors.
Panel mounting requirements have given rise to various connec-
tion versions and designs.
The fuses with blade contacts comply with IEC 60269-2 and are
suitable for installation in LV HRC fuse bases, in LV HRC fuse
switch disconnectors and switch disconnectors with fuses. They
also include fuses with slotted blade contacts for screw fixing
with 110 mm mounting dimension, whose sizes are according to
IEC 60269-4.
Fuses with slotted blade contacts for screw fixing with 80 mm or
110 mm mounting dimension are often screwed directly onto
busbars for optimum heat dissipation. Even better heat transmis-
sion is provided by the compact fuses with M10 or M12 female
thread, which are also mounted directly onto busbars.
Bolt-on links with 80 mm mounting dimension are another panel-
mounting version for direct busbar mounting.
The fuses for SITOR thyristor sets, railway rectifiers or electroly-
sis systems were developed specially for these applications.
LV HRC bases suitable for use with SITOR semiconductor fuses
and safety switching devices can be found on page 69 ff.
Fuse characteristics, configuration notes and the assignments
of SITOR semiconductor fuses to the fuse bases and 3NP and
3KL safety switching devices can be found in the Configuration
Manual, "Fuse Systems" at:
www.siemens.com/lowvoltage/manuals
The new size 3 type ranges have a round ceramic body instead
of a square one. These series are characterized by small I²t val-
ues with low power dissipation and high capability under alter-
nating load. The dimensions and functional values correspond
to the current standards IEC 60269-4/EN 60269-4 (VDE 0636-4).
Note:
The ordering data of the fuses are listed in ascending order of
the rated voltage in the selection tables.
Benefits
SITOR semiconductor fuses have a high varying load factor,
which ensures a high level of operational safety and plant
availability – even when subject to constant load change
The use of SITOR semiconductor fuses in LV HRC bases or
Siemens switch disconnectors has been tested with regard to
heat dissipation and maximum current loading. This makes
planning and dimensioning easier and prevents consequen-
tial damage
Our high standard of quality ensures good compliance with
the characteristic curve and accuracy. This ensures long-term
protection of devices
Operational classes
Fuses are categorized according to function and operational
classes. SITOR semiconductor fuses, in LV HRC design, are
available in the following operational classes:
aR: for the short-circuit protection of power semiconductors
(partial range protection)
gR: for the protection of power semiconductors
(full range protection)
gS: The operational class gS combines cable and line protec-
tion with semiconductor protection (full range protection)
Parallel-connected fuses
Parallel-connected fuses offer maximum current and energy
limiting that is clearly better than in the case of comparable
single fuses. They also fulfill the special requirements for
UL-certified fuses according to which fuses must be connec-
ted in parallel at the factory. Here is the original wording of
the NEC document: 240.8 Fuses and circuit breakers shall be
permitted to be connected in parallel where they are factory
assembled in parallel and listed as a unit. Individual fuses,
circuit breakers, or combinations thereof shall not otherwise
be connected in parallel.
© Siemens AG 2016
79
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
Application
Features
SITOR fuse links protect converter equipment against short
circuits.
The power semiconductors used in these devices (diodes,
thyristors, GTOs and others) require fast-switching elements
for protection due to their low thermal capacity. SITOR fuse links
(super quick-response fuse links for semiconductor protection)
are ideal for this type of application.
The following types of short-circuit faults can occur:
Internal short circuit:
A faulty semiconductor device causes a short circuit within the
power converter
External short circuit:
A fault in the load causes a short circuit on the output side of
the power converter
Inverter shoot-through:
In the event of a failure of the chassis converter control system
during inverter operation (commutation failure), the converter
connection forms a short-circuit type connection between the
DC and AC power supply system.
Fuse links can be arranged in a number of ways within the
converter connection. A distinction is made between phase
fuses in three-phase incoming feeders and, if applicable,
DC fuses and branch fuses in the branches of the converter
circuit (see adjacent diagrams). In the case of center tap
connections, fuse links can only be arranged as phase fuses
in three-phase incoming feeders.
When using SITOR fuse links of operational class aR, the over-
load protection of converter equipment, up to approx. 3.5 times
the rated current of the fuse link, is taken from conventional pro-
tective devices (for example, thermally-delayed overload relays)
or, in the case of controlled power converters, from the current
limiter (exception: full range fuses).
SITOR fuse links of the 3NE1...-0 series with operational class gS
are also suitable for overload and short-circuit protection of
cables, lines and busbars. All other dual-function fuses of the
SITOR series have a gR characteristic. Overload protection is
ensured as long as the rated current of the SITOR fuse links
of the series 3NE1...-0 is selected as In In Iz (DIN VDE 0100
Part 430).
The rules of DIN VDE 0100 Part 430 must be applied when rating
short-circuit protection for cables, lines and busbars.
Configuration options
I2_10898
Three-phase bidirectional circuit W3
with phase fuses with branch fuses
I2_10893
( ) ( )
I2_10894
Six-pulse bridge circuit B6 with
phase fuses
Six-pulse bridge circuit B6 with
phase fuses and DC fuse
(reversible connection)
I2_10895
I2_10896
Six-pulse bridge circuit B6 with
phase fuses and DC fuse
(connection for converter)
Six-pulse bridge circuit B6 with
branch fuses
( ) ( )
I2_10897
Six-pulse bridge circuit B6 with branch fuses
(reversible connection)
© Siemens AG 2016
80 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
Technical specifications
MLFB Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
Rated current
In
Melting I2t
value I2ts
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power dissi-
pation at In
Varying
load factor
VL
V AC / V DC kA
1)
A A2s A2s
2)
K
2)
W
3NB1234-3KK20 gR --/90015) 100 400 96000 24000015) 56 75 --
3NB1126-4KK11 aR --/125015) 100 200 10700 3900015) 53 50 --
3NB1128-4KK11 aR --/125015) 100 250 24500 8050015) 53 51 --
3NB1231-4KK11 aR --/125015) 100 315 41000 12900015) 55 63 --
3NB1234-4KK11 aR --/125015) 100 400 96000 29000015) 56 68 --
3NB1337-4KK11 aR --/125015) 100 500 195000 60000015) 55 89 --
3NB1345-4KK11 aR --/125015) 100 800 770000 191000015) 76 135 --
3NB2345-4KK16 aR --/125015) 150 800 375000 115000015) 74 160 --
3NB2350-4KK16 aR --/125015) 150 1000 7870000 225000015) 87 195 --
3NB2355-4KK16 aR --/125015) 150 1400 2150000 510000015) 89 250 --
3NB2357-4KK16 aR --/125015) 150 1600 3500000 745000015) 76 275 --
3NB2364-4KK17 aR --/125015) 150 2100 5750000 195000015) 77 365 --
3NB2366-4KK17 aR --/125015) 150 2400 9050000 1810000015) 89 445 --
3NB3350-1KK26 gR 690/13) 100 1000 298000 1400000 101 138 1
3NB3351-1KK26 gR 690/13) 100 1100 680000 3000000 96 110 1
3NB3352-1KK26 gR 690/13) 100 1250 897000 4100000 38 104 1
3NB3354-1KK26 gR 690/13) 100 1350 1100000 4800000 44 126 1
3NB3355-1KK26 gR 690/13) 100 1400 1150000 5200000 48 127 1
3NB3357-1KK26 gR 690/13) 100 1600 1550000 6900000 57 152 1
3NB3358-1KK26 gR 690/13) 100 1700 2370000 10000000 57 143 1
3NB3358-1KK27 gR 690/13) 100 1700 1550000 6400000 64 179 1
3NB3362-1KK27 gR 690/13) 100 1900 1850000 8200000 70 196 1
3NC2423-0C gR 500/13) 5014) 1503) 7000 33000 26 35 0.85
3NC2423-3C gR 500/13) 5014) 1503) 7000 33000 26 35 0.85
3NC2425-0C gR 500/13) 5014) 2003) 13600 64000 25 40 0.85
3NC2425-3C gR 500/13) 5014) 2003) 13600 64000 25 40 0.85
3NC2427-0C gR 500/13) 5014) 2503) 21000 99000 30 50 0.85
3NC2427-3C gR 500/13) 5014) 2503) 21000 99000 30 50 0.85
3NC2428-0C gR 500/13) 5014) 3003) 28000 132000 40 65 0.85
3NC2428-3C gR 500/13) 5014) 3003) 28000 132000 40 65 0.85
3NC2431-0C gR 500/13) 5014) 3503) 53000 249000 35 60 0.85
3NC2431-3C gR 500/13) 5014) 3503) 53000 249000 35 60 0.85
3NC2432-0C aR 500/13) 5014) 4003) 83000 390000 30 50 0.85
3NC2432-3C aR 500/13) 5014) 4003) 83000 390000 30 50 0.85
3NC3236-1U aR 690/13) 100 630 32500 244000 120 120 0.85
3NC3236-6U aR 690/13) 100 630 32500 244000 125 125 0.9
3NC3237-1U aR 690/13) 100 710 46100 346000 125 130 0.85
3NC3237-6U aR 690/13) 100 710 46100 346000 125 130 0.9
3NC3238-1U aR 690/13) 100 800 66400 498000 125 135 0.9
3NC3238-6U aR 690/13) 100 800 66400 498000 120 135 0.95
3NC3240-1U aR 690/13) 100 900 90300 677000 130 145 0.9
3NC3240-6U aR 690/13) 100 900 90300 677000 125 140 0.95
3NC3241-1U aR 690/13) 100 1000 130000 975000 125 155 0.95
3NC3241-6U aR 690/13) 100 1000 130000 975000 120 145 1
3NC3242-1U aR 690/13) 100 1100 184000 1382000 125 165 0.95
3NC3242-6U aR 690/13) 100 1100 184000 1382000 115 150 1
3NC3243-1U aR 690/13) 100 1250 265000 1990000 130 175 0.95
3NC3243-6U aR 690/13) 100 1250 265000 1990000 110 155 1
3NC3244-1U aR 500/13) 100 1400 382000 2100000 140 200 0.95
3NC3244-6U aR 500/13) 100 1400 382000 2100000 115 175 1
3NC3245-1U aR 500/13) 100 1600 520000 2860000 160 240 0.9
3NC3245-6U aR 500/13) 100 1600 520000 2860000 120 195 0.95
3NC3336-1U aR 1000/13) 100 630 66400 418000 160 145 0.85
3NC3336-6U aR 1000/13) 100 630 66400 418000 140 130 0.9
3NC3337-1U aR 1000/13) 100 710 90300 569000 160 150 0.85
3NC3337-6U aR 1000/13) 100 710 90300 569000 140 140 0.9
3NC3338-1U aR 1000/13) 100 800 130000 819000 150 155 0.85
3NC3338-6U aR 1000/13) 100 800 130000 819000 130 150 0.9
3NC3340-1U aR 1000/13) 100 900 184000 1160000 145 165 0.9
3NC3340-6U aR 1000/13) 100 900 184000 1160000 130 160 0.95
3NC3341-1U aR 1000/13) 100 1000 265000 1670000 140 170 0.9
3NC3341-6U aR 1000/13) 100 1000 265000 1670000 125 165 0.95
3NC3342-1U aR 800/13) 100 1100 382000 1910000 150 185 0.9
3NC3342-6U aR 800/13) 100 1100 382000 1910000 130 175 0.95
3NC3343-1U aR 800/13) 100 1250 520000 2600000 165 210 0.9
3NC3343-6U aR 800/13) 100 1250 520000 2600000 135 185 0.95
3NC3430-1U aR 1250/13) 100 315 10600 72500 60 80 0.95
3NC3430-6U aR 1250/13) 100 315 10600 72500 60 80 0.95
For footnotes, see page 84.
© Siemens AG 2016
81
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NC3432-1U aR 1250/13) 100 400 23900 163000 95 95 0.95
3NC3432-6U aR 1250/13) 100 400 23900 163000 95 95 0.95
3NC3434-1U aR 1250/13) 100 500 42500 290000 115 115 0.9
3NC3434-6U aR 1250/13) 100 500 42500 290000 115 115 0.9
3NC3436-1U aR 1250/13) 100 630 96600 650000 120 120 0.95
3NC3436-6U aR 1250/13) 100 630 96600 650000 120 120 0.95
3NC3438-1U aR 1100/13) 100 800 184000 985000 115 145 0.90
3NC3438-6U aR 1100/13) 100 800 184000 985000 109 145 0.95
3NC55314) aR 800/13) 5014) 3505) 66000 260000 200 80 0.9
3NC58384) aR 1000/13) 5014) 8005) 360000 1728000 130 170 0.9
3NC58404) aR 1000/13) 5014) 6005) 185000 888000 110 150 0.9
3NC58414) aR 800/13) 5014) 6305) 185000 888000 110 145 0.9
3NC7327-2 aR 680/13) 5014) 250 244000 635000 45 25 0.9
3NC7331-2 aR 680/13) 5014) 350 550000 1430000 66 32 0.9
3NC8423-0C gR 690/13) 5014) 1503) 1100 17600 33 40 0.85
3NC8423-3C gR 690/13) 5014) 1503) 1100 17600 33 40 0.85
3NC8425-0C gR 690/13) 5014) 2003) 2400 38400 46 55 0.85
3NC8425-3C gR 690/13) 5014) 2003) 2400 38400 46 55 0.85
3NC8427-0C gR 690/13) 5014) 2503) 4400 70400 95 72 0.85
3NC8427-3C gR 690/13) 5014) 2503) 4400 70400 95 72 0.85
3NC8431-0C gR 690/13) 5014) 3503) 11000 176000 65 95 0.85
3NC8431-3C gR 690/13) 5014) 3503) 1000 176000 65 95 0.85
3NC8434-0C gR 690/13) 5014) 5003) 28000 448000 75 130 0.85
3NC8434-3C gR 690/13) 5014) 5003) 28000 448000 75 130 0.85
3NC8444-3C aR 600/13) 5014) 1000 400000 2480000 110 140 0.9
3NE1020-2 gR 690/13) 100 80 780 5800 45 10 1
3NE1021-0 gS 690/13) 100 100 3100 33000 36 10 1
3NE1021-2 gR 690/13) 100 100 1490 11000 49 12 1
3NE1022-0 gS 690/13) 100 125 6000 63000 40 11 1
3NE1022-2 gR 690/13) 100 125 3115 23000 55 13 1
3NE1224-0 gS 690/13) 100 160 7400 60000 60 24 1
3NE1224-2 gR 690/13) 100 160 2650 18600 70 32 1
3NE1224-3 gR 690/13) 100 160 2650 18600 70 32 1
3NE1225-0 gS 690/13) 100 200 14500 100000 65 27 1
3NE1225-2 gR 690/13) 100 200 5645 51800 62 35 1
3NE1225-3 gR 690/13) 100 200 5645 51800 62 35 1
3NE1227-0 gS 690/13) 100 250 29500 200000 75 30 1
3NE1227-2 gR 690/13) 100 250 11520 80900 70 37 1
3NE1227-3 gR 690/13) 100 250 11520 80900 70 37 1
3NE1230-0 gS 690/13) 100 315 46100 310000 80 38 1
3NE1230-2 gR 690/13) 100 315 22580 168000 75 40 1
3NE1230-3 gR 690/13) 100 315 22580 168000 75 40 1
3NE1331-0 gS 690/13) 100 350 58000 430000 75 42 1
3NE1331-2 gR 690/13) 100 350 29500 177000 82 43 1
3NE1331-3 gR 690/13) 100 350 29500 177000 82 43 1
3NE1332-0 gS 690/13) 100 400 84000 590000 85 45 1
3NE1332-2 gR 690/13) 100 400 37300 177000 100 50 1
3NE1332-3 gR 690/13) 100 400 37300 177000 100 50 1
3NE1333-0 gS 690/13) 100 450 104000 750000 85 53 1
3NE1333-2 gR 690/13) 100 450 46100 276500 100 58 1
3NE1333-3 gR 690/13) 100 450 46100 276500 100 58 1
3NE1334-0 gS 690/13) 100 500 149000 950000 90 56 1
3NE1334-2 gR 690/13) 100 500 66400 398000 100 64 1
3NE1334-3 gR 690/13) 100 500 66400 398000 100 64 1
3NE1435-0 gS 690/13) 100 560 215000 1700000 65 50 1
3NE1435-2 gR 690/13) 100 560 130000 890000 80 60 1
3NE1436-3 gR 690/13) 100 560 130000 890000 80 60 1
3NE1436-0 gS 690/13) 100 630 293000 2350000 70 55 1
3NE1436-2 gR 690/13) 100 630 203000 1390000 82 60 1
3NE1436-3 gR 690/13) 100 630 203000 1390000 82 60 1
3NE1437-0 gS 690/13) 100 710 437000 3400000 68 58 1
3NE1437-1 gR 600/13) 100 710 321000 2460000 85 65 1
3NE1437-2 gR 690/13) 100 710 265000 1818000 90 72 1
3NE1437-3 gR 690/13) 100 710 265000 1818000 90 72 1
For footnotes, see page 84.
MLFB Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
Rated current
In
Melting I2t
value I2ts
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power dissi-
pation at In
Varying
load factor
VL
V AC / V DC kA
1)
A A2s A2s
2)
K
2)
W
© Siemens AG 2016
82 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE3201-0MK gR 1000/600 50/50 32 45 4500 32 9On request
3NE3202-0MK gR 1000/600 50/50 40 75 6000 35 13 On request
3NE3217-0MK gR 1000/600 50/50 50 110 8000 45 18 On request
3NE3218-0MK gR 1000/600 50/50 63 170 9000 62 25 On request
3NE3234-0MK08 aR 1000/600 50/50 500 46000 500000 100 105 On request
3NE3235-0MK08 aR 1000/600 50/50 550 68000 700000 107 110 On request
3NE3236-0MK08 aR 1000/600 50/50 630 90000 850.000 110 127 On request
3NE5302-0MK06 gR 1800/1100 30/45 40 45 900 45 26 On request
3NE5317-0MK06 gR 1800/1100 30/45 50 100 1800 45 27 On request
3NE5318-0MK06 gR 1800/1100 30/45 63 200 3100 55 34 On request
3NE5320-0MK06 aR 1800/1100 30/45 80 300 3900 58 42 On request
3NE5321-0MK06 aR 1800/1100 30/45 100 550 8700 58 45 On request
3NE5322-0MK06 aR 1800/1100 30/45 125 900 11800 68 59 On request
3NE5324-0MK06 aR 1800/1100 30/45 160 2500 37000 62 54 On request
3NE5325-0MK06 aR 1800/1100 30/45 200 6000 70000 62 56 On request
3NE5327-0MK06 aR 1800/1100 30/45 250 15000 165000 62 59 On request
3NE5330-0MK06 aR 1800/1100 30/45 315 28000 250000 66 76 On request
3NE5332-0MK06 aR 1500/1000 30/45 400 58000 470000 72 89 On request
3NE5334-0MK06 aR 1500/1000 30/45 500 110000 800000 81 109 On request
3NE5336-0MK06 aR 1500/1000 30/45 630 170000 1100000 88 163 On request
3NE5336-0MK66 aR 1500/1000 30/45 630 170000 1100000 85 163 On request
3NE8221-0MK aR 690/440 100/50 100 540 3200 55 25 On request
3NE8222-0MK aR 690/440 100/50 125 1000 6000 57 28.0 On request
3NE8224-0MK aR 690/440 100/50 160 1800 10500 68 35.0 On request
3NE8225-0MK aR 690/440 100/50 200 3000 17500 69 42 On request
3NE8227-0MK aR 690/440 100/50 250 5000 28.500 77 53.5 On request
3NE8230-0MK aR 690/440 100/50 315 19200 120000 65 68 On request
3NE8331-0MK aR 690/440 100/50 350 17500 83500 55 68.6 On request
3NE8332-0MK aR 690/440 100/50 400 27200 136000 60 72.8 On request
3NE8333-0MK aR 690/440 100/50 450 38000 207000 58 80.1 On request
3NE8334-0MK aR 690/440 100/50 500 59000 318000 58 77.5 On request
3NE8335-0MK aR 690/440 100/50 550 76000 399000 65 86.4 On request
3NE8336-0MK aR 690/440 100/50 630 122000 740000 67 90.7 On request
3NE8801-0MK gR 690/440 100/50 32 40 350 53 10.5 On request
3NE8802-0MK gR 690/440 100/50 40 50 480 53 12 On request
3NE8810-0MK gR 690/440 100/50 61.5 37 17 2.7 On request
3NE8812-0MK gR 690/440 100/50 10 450 30 4.5 On request
3NE8813-0MK gR 690/440 100/50 16 8.5 73 38 6.7 On request
3NE8814-0MK gR 690/440 100/50 20 15 90 45 8On request
3NE8815-0MK gR 690/440 100/50 25 25 150 40 8.1 On request
3NE8817-0MK gR 690/440 100/50 50 65 1050 65 14.5 On request
3NE8818-0MK gR 690/440 100/50 63 90 1960 74 23.0 On request
3NE8820-0MK aR 690/440 100/50 80 450 2,200 70 23.3 On request
3NE8821-0MK aR 690/440 100/50 100 820 3,650 73 27 On request
3NE8822-0MK aR 690/440 100/50 125 1700 7,800 60 30 On request
3NE8824-0MK aR 500/440 100/50 160 3300 14000 70 34 On request
3NE9330-0MK07 aR -/3000 -/45 315 65000 300000 95 245 On request
3NE1438-0 gS 690/13) 100 800 723000 5000000 70 58 1
3NE1438-1 gR 600/13) 100 800 437000 3350000 95 72 1
3NE1438-2 gR 690/13) 100 800 361000 2475000 95 84 1
3NE1438-3 gR 690/13) 100 800 361000 2475000 95 84 1
3NE1447-2 gR 690/13) 100 670 240000 1640000 90 64 1
3NE1447-3 gR 690/13) 100 670 240000 1640000 90 64 1
3NE1448-2 gR 690/13) 100 850 520000 3640000 95 76 1
3NE1448-3 gR 690/13) 100 850 520000 3640000 95 76 1
3NE1802-0 gS 690/13) 100 40 295 3000 30 3 1
3NE1803-0 gS 690/13) 100 35 166 1700 35 3.5 1
3NE1813-0 gS 690/13) 100 16 18 200 25 4 1
3NE1814-0 gS 690/13) 100 20 41 430 25 5 1
3NE1815-0 gS 690/13) 100 25 74 780 30 5 1
3NE1817-0 gS 690/13) 100 50 461 4400 35 6 1
3NE1818-0 gS 690/13) 100 63 903 9000 40 7 1
3NE1820-0 gS 690/13) 100 80 1843 18000 40 8 1
3NE3221 aR 1000/13) 100 100 665 4800 65 28 0.95
3NE3222 aR 1000/13) 100 125 1040 7200 70 36 0.95
3NE3224 aR 1000/13) 100 160 1850 13000 90 42 1
3NE3225 aR 1000/13) 100 200 4150 30000 80 42 1
3NE3227 aR 1000/13) 100 250 6650 48000 90 50 1
3NE3230-0B aR 1000/13) 100 315 13400 80000 100 60 0.95
3NE3231 aR 1000/13) 100 350 16600 100000 120 75 0.9
3NE3232-0B aR 1000/13) 100 400 22600 135000 140 85 0.9
3NE3233 aR 1000/13) 100 450 29500 175000 130 95 0.9
For footnotes, see page 84.
MLFB Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
Rated current
In
Melting I2t
value I2ts
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power dissi-
pation at In
Varying
load factor
VL
V AC / V DC kA
1)
A A2s A2s
2)
K
2)
W
© Siemens AG 2016
83
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE3332-0B aR 1000/13) 100 400 22600 135000 120 80 1
3NE3333 aR 1000/13) 100 450 29500 75000 125 90 1
3NE3334-0B aR 1000/13) 100 500 46100 260000 115 90 1
3NE3335 aR 1000/13) 100 560 66500 60000 120 95 1
3NE3336 aR 1000/13) 100 630 104000 600000 110 100 1
3NE3337-8 aR 900/13) 100 710 149000 800000 125 105 1
3NE3338-8 aR 800/13) 100 800 184000 850000 140 130 0.95
3NE3340-8 aR 690/13) 100 900 223000 920000 160 165 0.95
3NE3421-0C aR 1000/13) 5014) 100 1800 13500 45 25 1
3NE3430-0C aR 1000/13) 5014) 315 29000 218000 120 80 1
3NE3432-0C aR 1000/13) 5014) 400 48500 364000 130 110 1
3NE3434-0C aR 1000/13) 5014) 500 116000 870000 120 95 1
3NE3525-56) aR 1000/13) 5014) 2007) 7150 44000 75 50 0.85
3NE3535-56) aR 1000/13) 5014) 4507) 64500 395000 130 90 0.85
3NE3626-0C aR 1000/13) 5014) 224 7200 54000 140 85 1
3NE3635-0C aR 1000/13) 5014) 450 65000 488000 150 110 1
3NE3635-6 aR 1000/13) 5014) 450 65000 488000 150 110 1
3NE3636-0C aR 1000/13) 5014) 630 170000 1280000 136 132 1
3NE3637-0C aR 1000/13) 5014) 710 260000 1950000 170 145 1
3NE3637-1C8) aR 1000/13) 5014) 710 260000 1950000 170 145 1
3NE4101 gR 1000/13) 100 32 40 280 45 12 0.9
3NE4102 gR 1000/13) 100 40 75 500 50 13 0.9
3NE4117 gR 1000/13) 100 50 120 800 65 16 0.9
3NE4117-5 gR 1000/13) 5014) 50 135 1100 95 20 0.85
3NE4118 aR 1000/13) 100 63 230 1500 78 20 0.9
3NE4120 aR 1000/13) 100 80 450 3000 82 22 0.9
3NE4121 aR 1000/13) 100 100 900 6000 85 24 0.9
3NE4121-5 aR 1000/13) 5014) 100 900 7400 135 35 0.85
3NE4122 aR 1000/13) 100 125 1800 14000 100 30 0.9
3NE4124 aR 1000/13) 100 160 3600 29000 120 35 0.9
3NE4146-5 aR 800/13) 5014) 170 7370 60500 142 43 0.85
3NE4327-0B aR 800/13) 5014) 250 3600 29700 175 105 0.85
3NE4327-6B6) aR 800/13) 5014) 250 3600 29700 175 105 0.85
3NE4330-0B aR 800/13) 5014) 315 7400 60700 170 120 0.85
3NE4330-6B6) aR 800/13) 5014) 315 7400 60700 170 120 0.85
3NE4333-0B aR 800/13) 5014) 450 29400 191000 190 140 0.85
3NE4333-6B6) aR 800/13) 5014) 450 29400 191000 190 140 0.85
3NE4334-0B aR 800/13) 5014) 500 42500 276000 195 155 0.85
3NE4334-6B6) aR 800/13) 5014) 500 42500 276000 195 155 0.85
3NE4337 aR 800/13) 5014) 710 142000 923000 170 155 0.95
3NE4337-66) aR 800/13) 5014) 710 142000 923000 170 155 0.95
3NE5424-0C aR 1500/13) 5014) 160 7200 54000 75 56 1
3NE5426-0C aR 1500/13) 5014) 224 18400 138000 100 80 1
3NE5430-0C aR 1500/13) 5014) 315 41500 11000 125 115 1
3NE5431-0C aR 1500/13) 5014) 350 57000 428000 150 135 1
3NE5433-0C aR 1500/13) 5014) 450 116000 870000 150 145 0.95
3NE5433-1C11) aR 1500/13) 5014) 450 116000 870000 150 145 0.95
3NE5627-0C aR 1500/13) 5014) 250 11200 84000 170 130 1
3NE5633-0C aR 1500/13) 5014) 450 78500 590000 170 160 1
3NE5643-0C aR 1500/13) 5014) 600 260000 1950000 160 145 1
3NE6437 aR 900/13) 5014) 7109) 100000 620000 80 150 0.9
3NE6437-7 aR 900/13) 5014) 71010) 100000 620000 110 150 0.9
3NE6444 aR 900/13) 5014) 9009) 400000 1920000 80 170 0.9
3NE7425-0U aR 2000/13) 100 200 18400 138000 85 75 1
3NE7427-0U aR 2000/13) 100 250 29000 218000 110 110 1
3NE7431-0U aR 2000/13) 100 350 74000 555000 105 120 1
3NE7432-0U aR 2000/13) 100 400 116000 870000 130 150 1
3NE7633-0U aR 2000/13) 100 450 128000 960000 165 160 1
3NE7633-1U11) aR 2000/13) 100 450 128000 960000 165 160 1
3NE7636-0U aR 2000/13) 100 630 260000 1950000 200 220 1
3NE7636-1U11) aR 2000/13) 100 630 260000 1950000 200 220 1
3NE7637-1U11) aR 2000/13) 100 710 415000 3110000 230 275 1
3NE7648-1U11) aR 2000/13) 100 525 149000 1120000 210 210 1
3NE8003-1 gR 690/13) 100 35 70 400 45 90.95
3NE8015-1 gR 690/13) 100 25 30 180 35 70.95
3NE8017-1 gR 690/13) 100 50 120 700 65 14 0.9
3NE8018-1 gR 690/13) 100 63 260 1400 70 16 0.95
3NE8020-1 aR 690/13) 100 80 450 2400 80 19 0.95
3NE8021-1 aR 690/13) 100 100 850 4200 90 22 0.95
3NE8022-1 aR 690/13) 100 125 1400 6500 110 28 0.95
3NE8024-1 aR 690/13) 100 160 2800 13000 130 38 0.95
For footnotes, see page 84.
MLFB Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
Rated current
In
Melting I2t
value I2ts
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power dissi-
pation at In
Varying
load factor
VL
V AC / V DC kA
1)
A A2s A2s
2)
K
2)
W
© Siemens AG 2016
84 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE8701-1 gR 690/70012) 5014) 32 40 285 45 10 0.9
3NE8702-1 gR 690/70012) 5014) 40 69 490 55 12 0.9
3NE8714-1 gR 690/70012) 5014) 20 12 83 40 70.9
3NE8715-1 gR 690/70012) 5014) 25 19 140 40 90.9
3NE8717-1 gR 690/70012) 5014) 50 115 815 60 15 0.9
3NE8718-1 gR 690/70012) 5014) 63 215 1550 70 16 0.95
3NE8720-1 aR 690/70012) 5014) 80 380 2700 80 18 0.9
3NE8721-1 aR 690/70012) 5014) 100 695 4950 75 19 0.95
3NE8722-1 aR 690/70012) 5014) 125 1250 9100 80 23 0.95
3NE8724-1 aR 690/70012) 5014) 160 2350 17000 100 31 0.9
3NE8725-1 aR 690/70012) 5014) 200 4200 30000 120 36 0.9
3NE8727-1 aR 690/70012) 5014) 250 7750 55000 125 42 0.9
3NE8731-1 aR 690/70012) 5014) 315 12000 85500 150 54 0.85
3NE9440-6 gR 600/13) 5014) 850 400000 2480000 74 85 1
3NE9450 aR 600/13) 5014) 12509) 400000 2480000 80 210 0.9
3NE9450-7 aR 600/13) 5014) 125010) 400000 2480000 105 210 0.9
3NE9632-1C11) aR 2500/13) 5014) 00 81000 620000 160 205 1
3NE9634-1C11) aR 2500/13) 5014) 500 170000 1270000 180 235 1
3NE9636-1C11) aR 2500/13) 5014) 630 385000 2800000 198 275 1
MLFB Operational
class
(IEC 60269)
Rated
voltage Un
Rated
breaking
capacity I1n
Rated current
In
Melting I2t
value I2ts
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power dissi-
pation at In
Varying
load factor
VL
V AC / V DC kA
1)
A A2s A2s
2)
K
2)
W
1) Maximum tightening torque: M10 capped thread: 35 Nm,
screw penetration depth 9 mm.
2) Temperature rise and power dissipation for operation in LV HRC fuse
base.
3) Cooling air speed 1 m/s. In the case of natural air cooling, reduction
of 5 %.
4) Maximum tightening torque:
- M10 thread (with indicator): 40 Nm
- M10 capped thread: 50 Nm, screw penetration depth 9 mm.
- M24 × 1.5 thread: 60 Nm.
5) Temperature of water-cooled busbar max. +45 °C.
6) Maximum tightening torque:
M10 capped thread: 35 Nm, screw penetration depth 9 mm.
7) Cooling air speed 0.5 m/s. In the case of natural air cooling,
reduction of 5 %.
8) Gauge 140 mm, M12 screw connection.
9) Cooling air speed 2m/s.
10) Bottom (cooled) connection max. +60 °C,
top connection (M10) max. +110 °C.
11) M12 screw connection.
12) Rated voltage according to UL.
13) DC rated voltage: See page 179, "Use with direct current".
14) Minimum 50 kA, higher values on request.
15) I2t at UVSI 1500 V, at Un 1250 V is k = 0.79.
In the case of 3NB1234-3KK20 I2t at UVSI 1400 V,
at Un 900 V is I2t 180000 A2s.
© Siemens AG 2016
85
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
Load rating of SITOR fuse links with 3NH LV HRC fuse bases
Use in switch disconnectors and fuse bases
When using SITOR semiconductor fuses in 3KL and 3KM switch
disconnectors with fuses and with 3NP fuse switch disconnec-
tors and 3NH LV HRC fuse bases, the rated current of the fuse
must sometimes be reduced due to the higher power loss com-
pared with LV HRC fuses for line protection. Sometimes when
using SITOR semiconductor fuses, the currents designated can
be higher than the rated currents of the switches and fuse bases.
These higher currents only apply when using SITOR semicon-
ductor fuses and cannot be used when using the devices with
standard LV HRC fuses. You will find further details in the follow-
ing selection tables.
When using SITOR semiconductor fuses of the 3NC24, 3NC84,
3NE33 and 3NE43 series, the standard switching capacity of the
fuse must not be used as the blades of these fuses (in contrast
to LV HRC fuses) are slit. Occasional switching of currents up to
the rated current of the fuses is permissible.
The use of SITOR semiconductor fuses > 63 A for overload
protection is not permitted – even if gR fuses are used
(exception: 3NE1).
The operational voltage is limited by the rated voltage of the
switch disconnector or the fuse. If switching without load,
the limit value is the rated insulation voltage of the switch
disconnector.
The 3NE1 "double protection fuses" can be used as full range
fuses (gS) both for semiconductor and line protection.
For further information on the assignment of SITOR semiconduc-
tor fuses to the fuse bases and safety switching devices, please
refer to the tables on page 85 ff.
SITOR fuse links Ø min Cu 3NH LV HRC fuse bases
Article No. InUnOpera-
tional
class
Size VL Article No. Size Imax IVL
AV AC mm2 A
3NC2423-0C/3C 150 500 gR 3 0.85 70 3NH3430/20 3150128
3NC2425-0C/3C 200 500 gR 3 0.85 95 3190162
3NC2427-0C/3C 250 500 gR 3 0.85 120 3240204
3NC2428-0C/3C 300 500 gR 3 0.85 185 3285242
3NC2431-0C/3C 350 500 gR 3 0.85 240 3330281
3NC2432-0C/3C 400 500 aR 3 0.85 240 3400340
3NC3336-1U 630 1000 aR 3 0.85 2 x (40 x 5) 3NH3430/20 3560476
3NC3337-1U 710 1000 aR 3 0.85 2 x (50 x 5) 3600510
3NC3338-1U 800 1000 aR 3 0.85 2 x (40 x 8) 3660561
3NC3340-1U 900 1000 aR 3 0.90 2 x (40 x 8) 3750675
3NC3341-1U 1000 1000 aR 3 0.90 2 x (50 x 8) 3850765
3NC3342-1U 1100 800 aR 3 0.90 2 x (50 x 8) 3900810
3NC3343-1U 1250 800 aR 3 0.90 2 x (50 x 8) 3950855
3NC3430-1U 315 1250 aR 3 0.95 2 x 95 3NH3430/20 3310295
3NC3432-1U 400 1250 aR 3 0.95 2 x 120 3390371
3NC3434-1U 500 1250 aR 3 0.90 2 x 150 3460414
3NC3436-1U 630 1250 aR 3 0.95 2 x (40 x 5) 3560532
3NC3438-1U 800 1100 aR 3 0.90 2 x (40 x 8) 3690656
3NC8423-0C/-3C 150 690 gR 3 0.85 70 3NH3430/20 3135115
3NC8425-0C/-3C 200 690 gR 3 0.85 95 3180153
3NC8427-0C/-3C 250 690 gR 3 0.85 120 3250213
3NC8431-0C/-3C 350 690 gR 3 0.85 240 3315268
3NC8434-0C/-3C 500 690 gR 3 0.85 2 x 150 3450383
3NC8444-3C 1000 600 aR 3 0.95 2 x (60 x 6) 3800800
3NE1020-2 80 690 gR 00 1.0 25 3NH3030/4030 00 80 80
3NE1021-0 100 690 gS 00 1.0 35 00 100 100
3NE1021-2 100 690 gR 00 1.0 35 00 100 100
3NE1022-0 125 690 gS 00 1.0 50 00 125 125
3NE1022-2 125 690 gR 00 1.0 50 00 125 125
3NE1224-0 160 690 gS 1 1.0 70 3NH3230/4230 1160160
3NE1224-2/-3 160 690 gR 1 1.0 70 1160160
3NE1225-0 200 690 gS 1 1.0 95 1200200
3NE1225-2/-3 200 690 gR 1 1.0 95 1200200
3NE1227-0 250 690 gS 1 1.0 120 1250250
3NE1227-2/-3 250 690 gR 1 1.0 120 1250250
3NE1230-0 315 690 gS 1 1.0 2 x 70 3NH3330/20 2315315
3NE1230-2/-3 315 690 gR 1 1.0 2 x 70 2315315
3NE1331-0 350 690 gS 2 1.0 2 x 95 3NH3330/20 2350350
3NE1331-2/-3 350 690 gR 2 1.0 2 x 95 2350350
3NE1332-0 400 690 gS 2 1.0 2 x 95 2400400
3NE1332-2/-3 400 690 gR 2 1.0 2 x 95 2400400
3NE1333-0 450 690 gS 2 1.0 2 x 120 3NH3430/20 3450450
3NE1333-2/-3 450 690 gR 2 1.0 2 x 120 3450450
3NE1334-0 500 690 gS 2 1.0 2 x 120 3500500
3NE1334-2/-3 500 690 gR 2 1.0 2 x 120 3500500
3NE1435-0 560 690 gS 3 1.0 2 x 150 3560560
3NE1435-2/-3 560 690 gR 3 1.0 2 x 150 3560560
© Siemens AG 2016
86 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
Un = Rated voltage
In = Rated current
VL = Varying load factor
Ømin Cu = Required conductor cross-section Cu
Imax = Maximum permissible current
IVL = Maximum permissible current with varying load
3NE1436-0 630 690 gS 3 1.0 2 x 185 3630630
3NE1436-2/-3 630 690 gR 3 1.0 2 x 185 3630630
3NE1437-0 710 690 gS 3 1.0 2 x (40 x 5) 3710710
3NE1437-1 710 600 gR 3 1.0 2 x (40 x 5) 3690690
3NE1437-2/-3 710 690 gR 3 1.0 2 x (40 x 5) 3710710
3NE1438-0 800 690 gS 3 1.0 2 x (50 x 5) 3NH3430/20 3800800
3NE1438-1 800 600 gR 3 1.0 2 x (50 x 5) 3750750
3NE1438-2/-3 800 690 gR 3 1.0 2 x (50 x 5) 3800800
3NE1447-2/-3 670 690 gR 3 1.0 2 x (40 x 5) 3670670
3NE1448-2/-3 850 690 gR 3 1.0 2 x (40 x 8) 3850850
3NE1802-0 40 690 gS 000 1.0 10 3NH3030/4030 00 40 40
3NE1803-0 35 690 gS 000 1.0 6 00 35 35
3NE1813-0 16 690 gS 000 1.0 1.5 00 16 16
3NE1814-0 20 690 gS 000 1.0 2.5 00 20 20
3NE1815-0 25 690 gS 000 1.0 4 00 25 25
3NE1817-0 50 690 gS 000 1.0 10 00 50 50
3NE1818-0 63 690 gS 000 1.0 16 00 63 63
3NE1820-0 80 690 gS 000 1.0 25 00 80 80
3NE3221 100 1000 aR 1 0.95 35 3NH3230/4230 110095
3NE3222 125 1000 aR 1 0.95 50 1125119
3NE3224 160 1000 aR 1 1.0 70 1160160
3NE3225 200 1000 aR 1 1.0 95 1200200
3NE3227 250 1000 aR 1 1.0 120 1250250
3NE3230-0B 315 1000 aR 1 0.95 185 3NH3330/20 2305290
3NE3231 350 1000 aR 1 0.95 240 3NH3330/20 2335318
3NE3232-0B 400 1000 aR 1 0.90 240 2380342
3NE3233 450 1000 aR 1 0.90 2x 150 2425383
3NE3332-0B 400 1000 aR 2 1.0 240 3NH3430/20 3400400
3NE3333 450 1000 aR 2 1.0 2 x 150 3450450
3NE3334-0B 500 1000 aR 2 1.0 2 x 150 3500500
3NE3335 560 1000 aR 2 1.0 2 x 185 3560560
3NE3336 630 1000 aR 2 1.0 2 x 185 3630630
3NE3337-8 710 900 aR 2 1.0 2 x (40 x 5) 3680680
3NE3338-8 800 800 aR 2 0.95 2 x 240 3700665
3NE3340-8 900 690 aR 2 0.95 2 x (40 x 8) 3750713
3NE4101 32 1000 gR 0 0.9 6 3NH3120/4230 0/1 32 29
3NE4102 40 1000 gR 0 0.9 10 0/1 40 36
3NE4117 50 1000 gR 0 0.9 10 0/1 50 45
3NE4118 63 1000 aR 0 0.9 16 0/1 63 57
3NE4120 80 1000 aR 0 0.9 25 0/1 80 72
3NE4121 100 1000 aR 0 0.9 35 0/1 100 90
3NE4122 125 1000 aR 0 0.9 50 0/1 125 113
3NE4124 160 1000 aR 0 0.9 70 0/1 160 144
3NE4327-0B 250 800 aR 2 0.85 150 3NH3330/20 2240204
3NE4330-0B 315 800 aR 2 0.85 240 2300255
3NE4333-0B 450 800 aR 2 0.85 2 x (30 x 5) 3NH3430/20 3425361
3NE4334-0B 500 800 aR 2 0.85 2 x (30 x 5) 3475404
3NE4337 710 800 aR 2 0.95 2 x (50 x 5) 3630599
3NE8015-1 25 690 gR 00 0.95 4 3NH3030/4030 00 25 24
3NE8003-1 35 690 gR 00 0.95 6 00 35 33
3NE8017-1 50 690 gR 00 0.90 10 00 50 45
3NE8018-1 63 690 gR 00 0.95 16 00 63 60
3NE8020-1 80 690 aR 00 0.95 25 00 80 76
3NE8021-1 100 690 aR 00 0.95 35 3NH3030/4030 00 100 95
3NE8022-1 125 690 aR 00 0.95 50 00 125 119
3NE8024-1 160 690 aR 00 0.95 70 00 160 152
SITOR fuse links Ø min Cu 3NH LV HRC fuse bases
Article No. InUnOpera-
tional
class
Size VL Article No. Size Imax IVL
AV AC mm2 A
© Siemens AG 2016
87
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
Load rating of SITOR fuse links with 3NP LV HRC fuse switch disconnectors
SITOR fuse links Ø min Cu 3NP LV HRC fuse switch disconnectors
Add-on units
Article No. InUnSize VL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL
AV AC mm2 A A A A
3NC2423-0C/
3NC2423-3C
150 500 3 0.85 70 3NP54 3 145 125 3NP4470 3 140 120 3NP1163 3 140 119
3NC2425-0C/
3NC2425-3C
200 500 3 0.85 95 3 180 165 3 175 160 3 175 149
3NC2427-0C/
3NC2427-3C
250 500 3 0.85 120 3 225 205 3 220 200 3 220 187
3NC2428-0C/
3NC2428-3C
300 500 3 0.85 185 3 255 240 3 250 235 3 250 213
3NC2431-0C/
3NC2431-3C
350 500 3 0.85 240 3 330 295 3 320 290 3 320 272
3NC2432-0C/
3NC2432-3C
400 500 3 0.85 240 3 400 380 3 370 370 3 370 315
3NC3336-1U 630 1000 3 0.85 2 x (40 x 5) 3NP54 3 530 451 3NP4470 3 500 425 3NP1163 3 500 425
3NC3337-1U 710 1000 3 0.85 2 x (50 x 5) 3 570 485
3NC3338-1U 800 1000 3 0.85 2 x (40 x 8) 3 630 536
3NC3340-1U 900 1000 3 0.90 2 x (40 x 8) 3 700 630
3NC3341-1U 1000 1000 3 0.90 2 x (50 x 8) 3 770 693
3NC3342-1U 1100 800 3 0.90 2 x (50 x 8) 3 800 720
3NC3343-1U 1250 800 3 0.90 2 x (50 x 8) 3 850 765
3NC3430-1U 315 1250 3 0.95 2 x 95 3NP54 3 295 280 3NP4470 3 280 266 3NP1163 3 280 266
3NC3432-1U 400 1250 3 0.95 2 x 120 3 355 337 3 340 323 3 340 323
3NC3434-1U 500 1250 3 0.90 2 x 150 3 440 396 3 400 360 3 400 360
3NC3436-1U 630 1250 3 0.95 2 x (40 x 5) 3 520 494 3 460 437 3 460 437
3NC3438-1U 800 1100 3 0.90 2 x (40 x 8) 3 625 594
3NC8423-0C/
3NC8423-3C
150 690 3 0.85 70 3NP54 3 135 125 3NP4470 3 120 120 3NP1163 3 120 102
3NC8425-0C/
3NC8425-3C
200 690 3 0.85 95 3 180 165 3 160 160 3 160 136
3NC8427-0C/
3NC8427-3C
250 690 3 0.85 120 3 225 205 3 200 200 3 200 170
3NC8431-0C
3NC8431/-3C
350 690 3 0.85 240 3 300 275 3 270 270 3 270 230
3NC8434-0C/
3NC8434-3C
500 690 3 0.85 2 x 150 3 425 400 3 385 385 3 385 327
3NC8444-3C 1000 600 3 0.95 2 x (60 x 6) 3 800 760
3NE1020-2 80 690 00 1.0 25 3NP50 00 80 80 3NP4070 00 80 80 3NP1133 00 80 80
3NE1021-0 100 690 00 1.0 35 00 100 100 00 100 100 00 100 100
3NE1021-2 100 690 00 1.0 35 00 100 100 00 98 98 00 95 95
3NE1022-0 125 690 00 1.0 50 00 125 125 00 125 125 00 120 120
3NE1022-2 125 690 00 1.0 50 00 125 125 00 120 120 00 115 115
3NE1224-0 160 690 1 1.0 70 3NP52/42 1 160 160 3NP53/43 2 160 160 3NP1143 1 160 160 3NP1153 2 160 160
3NE1224-2/-3 160 690 1 1.0 70 1 160 160 2 160 160 1 150 150 2 160 160
3NE1225-0 200 690 1 1.0 95 1 200 200 2 200 200 1 190 190 2 200 200
3NE1225-2/-3 200 690 1 1.0 95 1 200/
190
200/
190
2 200 200 1 180 180 2 190 190
3NE1227-0 250 690 1 1.0 120 1 250 250 2 250 250 1 235 235 2 250 250
3NE1227-2/-3 250 690 1 1.0 120 1 250/
235
250/
235
2 250 250 1 220 220 2 235 235
3NE1230-0 315 690 1 1.0 2 x 70 3NP53/43 2 315 315 3NP1153 2 290 290
3NE1230-2/-3 315 690 1 1.0 2 x 70 2 315 315 2 278 278
3NE1331-0 350 690 2 1.0 2 x 95 3NP53/43 2 350 350 3NP54/44 3 350 350 3NP1153 2 315 315 3NP1163 3 340 340
3NE1331-2/-3 350 690 2 1.0 2 x 95 2 350 350 3 350 350 2 300 300 3 330 330
3NE1332-0 400 690 2 1.0 2 x 95 2 400 400 3 400 400 2 340 340 3 380 380
3NE1332-2/-3 400 690 2 1.0 2 x 95 2 400 400 3 400 400 2 328 328 3 370 370
3NE1333-0 450 690 2 1.0 2 x 120 3NP54/44 3 450 450 3NP1163 3 450 450
3NE1333-2/-3 450 690 2 1.0 2 x 120 3NP54 3 450 450 3NP4470 3 425 425 3 430 430
3NE1334-0 500 690 2 1.0 2 x 120 3NP54/44 3 500 500 3 500 500
3NE1334-2/-3 500 690 2 1.0 2 x 120 3NP54 3 500 500 3NP4470 3 465 465 3 475 475
3NE1435-0 560 690 3 1.0 2 x 150 3NP54/44 3 560 560 3NP1163 3 560 560
3NE1435-2/-3 560 690 3 1.0 2 x 150 3NP54 3 560 560 3NP4470 3 540 540 3 555 555
3NE1436-0 630 690 3 1.0 2 x 185 3 630 630 3 620 620 3 630 630
3NE1436-2/-3 630 690 3 1.0 2 x 185 3 625 625 3 600 600 3 620 620
3NE1437-0 710 690 3 1.0 2 x (40 x 5) 3 710 710 3 690 650 -
3NE1437-1 710 600 3 1.0 2 x (40 x 5) 3 690 690 3 670 630 -
3NE1437-2/-3 710 690 3 1.0 2 x (40 x 5) 3 685 685 -
3NE1438-0 800 690 3 1.0 2 x (50 x 5) 3NP54 3 800 800 3NP4470 3 750 700 -
3NE1438-1 800 600 3 1.0 2 x (50 x 5) 3 750 750 3 710 630 -
3NE1438-2/-3 800 690 3 1.0 2 x (50 x 5) 3 770 770 -
3NE1447-2/-3 670 690 3 1.0 2 x (40 x 5) 3 655 655 -
3NE1448-2/-3 850 690 3 1.0 2 x (40 x 8) 3 820 820 -
© Siemens AG 2016
88 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
Un = Rated voltage
In = Rated current
VL = Varying load factor
Ømin Cu = Required conductor cross-section Cu
Imax = Maximum permissible current
IVL = Maximum permissible current with varying load
3NE1802-0 40 690 000 1.0 10 3NP35/
3NP4010
000 40 40 3NP50/
3NP4070
00 40 40 3NP1123 000 40 40 3NP1133 00 40 40
3NE1803-0 35 690 000 1.0 6000 35 35 00 35 35 000 35 35 00 35 35
3NE1813-0 16 690 000 1.0 1.5 000 16 16 00 16 16 000 16 16 00 16 16
3NE1814-0 20 690 000 1.0 2.5 000 20 20 00 20 20 000 20 20 00 20 20
3NE1815-0 25 690 000 1.0 4000 25 25 00 25 25 000 25 25 00 25 25
3NE1817-0 50 690 000 1.0 10 000 50 50 00 50 50 000 50 50 00 50 50
3NE1818-0 63 690 000 1.0 16 000 63 63 00 63 63 000 63 63 00 63 63
3NE1820-0 80 690 000 1.0 25 000 80 80 00 80 80 000 80 80 00 80 80
3NE3221 100 1000 10.95 35 3NP52/42 195 90 3NP53/
3NP43
2100 95 3NP1143 188 84 3NP1153 295 90
3NE3222 125 1000 10.95 50 1110 110 2120 114 1102 97 2110 105
3NE3224 160 1000 11.0 70 1140 140 2150 150 1130 130 2140 140
3NE3225 200 1000 11.0 95 1175 175 2190 190 1163 163 2175 175
3NE3227 250 1000 11.0 120 1210 210 2230 230 1195 195 2210 210
3NE3230-0B 315 1000 10.95 185 3NP53 2285 280 3NP4370 2270 270 2270 257
3NE3231 350 1000 10.95 240 2310 300 2290 290 2290 276
3NE3232-0B 400 1000 10.90 240 2330 320 2310 310 2320 288
3NE3233 450 1000 10.90 2 x 150 2360 340 2330 330 2360 324
3NE3332-0B 400 1000 21.0 240 3NP54 3360 345 3NP4470 3345 345 3NP1153 2330 330 3NP1163 3360 360
3NE3333 450 1000 21.0 2 x 150 3400 385 3385 385 3375 375
3NE3334-0B 500 1000 21.0 2 x 150 3450 450 3430 430 3420 420
3NE3335 560 1000 21.0 2 x 185 3510 510 3490 490 3475 475
3NE3336 630 1000 21.0 2 x 185 3580 580 3560 560 3540 540
3NE3337-8 710 900 21.0 2 x (40 x 5) 3630 630 3590 590 3580 580
3NE3338-8 800 800 20.95 2 x 240 3630 630 3605 605 3605 575
3NE3340-8 900 690 20.95 2 x (40 x 8) 3630 630 3630 630 3630 599
3NE4101 32 1000 00.9 63NP52 132 29 3NP4270 132 29 3NP1143 130 27
3NE4102 40 1000 00.9 10 140 36 138 34 135 32
3NE4117 50 1000 00.9 10 150 45 145 41 142 38
3NE4118 63 1000 00.9 16 163 57 159 53 155 50
3NE4120 80 1000 00.9 25 180 72 176 68 171 64
3NE4121 100 1000 00.9 35 195 86 190 81 184 76
3NE4122 125 1000 00.9 50 1120 108 1115 104 1107 96
3NE4124 160 1000 00.9 70 1150 135 1144 130 1134 121
3NE4327-0B 250 800 20.85 150 3NP53/54 2/3 210/
220
205/
210
3NP4470 3205 200 3NP1153 2195 166 3NP1163 3215 183
3NE4330-0B 315 800 20.85 240 2/3 270/
285
255/
265
3260 250 2240 204 3270 230
3NE4333-0B 450 800 20.85 2 x (30 x 5) 2/3 400/
420
370/
380
3375 360 3370 315
3NE4334-0B 500 800 20.85 2 x (30 x 5) 3NP54 3450 400 3410 395 3410 349
3NE4337 710 800 20.95 2 x (50 x 5) 3600 570 3540 540 3540 513
3NE8015-1 25 690 00 0.95 43NP50/
3NP4070
00 25 24 3NP1133 00 25 24
3NE8003-1 35 690 00 0.95 600 33 31 00 32 30
3NE8017-1 50 690 00 0.90 10 00 45 41 00 43 39
3NE8018-1 63 690 00 0.95 16 00 54 51 00 52 49
3NE8020-1 80 690 00 0.95 25 00 68 65 00 65 62
3NE8021-1 100 690 00 0.95 35 3NP50/
3NP4070
00 89 85 3NP1133 00 85 81
3NE8022-1 125 690 00 0.95 50 00 106 101 00 100 95
3NE8024-1 160 690 00 0.95 70 00 130 124 00 120 114
SITOR fuse links Ø min Cu 3NP LV HRC fuse switch disconnectors
Add-on units
Article No. InUnSize VL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL
AV AC mm2 A A A A
© Siemens AG 2016
89
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
SITOR fuse links Ø min Cu 3NP LV HRC fuse switch disconnectors
Busbar devices
Article No. InUnSize VL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL
AV AC mm2 A A A A
3NC2423-0C/
3NC2423-3C
150 500 30.85 70 3NP4476 3140 120 3NP1163 3150 128
3NC2425-0C/
3NC2425-3C
200 500 30.85 95 3175 160 3190 162
3NC2427-0C/
3NC2427-3C
250 500 30.85 120 3215 195 3237 201
3NC2428-0C/
3NC2428-3C
300 500 30.85 185 3245 230 3285 242
3NC2431-0C
3NC2431-/3C
350 500 30.85 240 3315 285 3332 282
3NC2432-0C/
3NC2432-3C
400 500 30.85 240 3360 360 3380 323
3NC3336-1U 630 1000 30.85 2 x (40 x 5) 3NP1163 3500 425
3NC3337-1U 710 1000 30.85 2 x (50 x 5) 3560 476
3NC3338-1U 800 1000 30.85 2 x (40 x 8) 3630 536
3NC3340-1U 900 1000 30.90 2 x (40 x 8) 3630 567
3NC3341-1U 1000 1000 30.90 2 x (50 x 8) 3630 567
3NC3342-1U 1100 800 30.90 2 x (50 x 8) 3630 567
3NC3343-1U 1250 800 30.90 2 x (50 x 8) 3630 567
3NC3430-1U 315 1250 30.95 2 x 95 3NP4476 3280 266 3NP1163 3285 271
3NC3432-1U 400 1250 30.95 2 x 120 3340 323 3340 323
3NC3434-1U 500 1250 30.90 2 x 150 3400 360 3425 383
3NC3436-1U 630 1250 30.95 2 x (40 x 5) 3460 437 3535 508
3NC3438-1U 800 1100 30.90 2 x (40 x 8) 3520 494
3NC8423-0C/
3NC8423-3C
150 690 30.85 70 3NP4476 3120 120 3NP1163 3140 120
3NC8425-0C/
3NC8425-3C
200 690 30.85 95 3155 155 3190 155
3NC8427-0C/
3NC8427-3C
250 690 30.85 120 3195 195 3240 195
3NC8431-0C/
3NC8431-3C
350 690 30.85 240 3260 260 3300 260
3NC8434-0C/
3NC8434-3C
500 690 30.85 2 x 150 3375 375 3385 375
3NC8444-3C 1000 600 30.95 2 x (60 x 6) 3630 630 3600 630
3NE1020-2 80 690 00 1.0 25 3NP4076 00 80 80 3NP1133 00 80 80
3NE1021-0 100 690 00 1.0 35 00 100 100 00 100 100
3NE1021-2 100 690 00 1.0 35 00 98 98 00 95 95
3NE1022-0 125 690 00 1.0 50 00 125 125 00 120 120
3NE1022-2 125 690 00 1.0 50 00 120 120 00 115 115
3NE1224-0 160 690 11.0 70 3NP4276 1160 160 3NP4376 2160 160 3NP1143 1160 160 3NP1153 2160 160
3NE1224-2/-3 160 690 11.0 70 1160 160 2160 160 1152 152 2160 160
3NE1225-0 200 690 11.0 95 1200 200 2200 200 1200 200 2200 200
3NE1225-2/-3 200 690 11.0 95 1190 190 2200 200 1180 180 2190 190
3NE1227-0 250 690 11.0 120 1250 250 2250 250 1238 238 2250 250
3NE1227-2/-3 250 690 11.0 120 1235 235 2250 250 1213 213 2235 235
3NE1230-0 315 690 11.0 2 x 70 2315 315 2315 315
3NE1230-2/-3 315 690 11.0 2 x 70 2315 315 2315 315
3NE1331-0 350 690 21.0 2 x 95 3NP4376 2350 350 3NP4476 3350 350 3NP1153 2350 350 3NP1163 3350 350
3NE1331-2/-3 350 690 21.0 2 x 95 2350 350 3350 350 2330 330 3350 350
3NE1332-0 400 690 21.0 2 x 95 2400 400 3400 400 2380 380 3400 400
3NE1332-2/-3 400 690 21.0 2 x 95 2400 400 3400 400 2360 360 3400 400
3NE1333-0 450 690 21.0 2 x 120 3450 450 3430 430
3NE1333-2/-3 450 690 21.0 2 x 120 3425 425 3420 420
3NE1334-0 500 690 21.0 2 x 120 3480 480 3450 450
3NE1334-2/-3 500 690 21.0 2 x 120 3450 450 3450 450
3NE1435-0 560 690 31.0 2 x 150 3NP4476 3510 510 3NP1163 3520 520
3NE1435-2/-3 560 690 31.0 2 x 150 3500 500 3510 510
3NE1436-0 630 690 31.0 2 x 185 3535 535 3585 585
3NE1436-2/-3 630 690 31.0 2 x 185 3520 520 3570 570
3NE1437-0 710 690 31.0 2 x (40 x 5) 3600 600 3605 605
3NE1437-1 710 600 31.0 2 x (40 x 5) 3570 570 3590 590
3NE1437-2/-3 710 690 31.0 2 x (40 x 5) 3540 540 3580 580
3NE1438-0 800 690 31.0 2 x (50 x 5) 3NP4476 3640 630 3NP1163 3630 630
3NE1438-1 800 600 31.0 2 x (50 x 5) 3600 600 3610 610
3NE1438-2/-3 800 690 31.0 2 x (50 x 5) 3580 580 3600 600
3NE1447-2/-3 670 690 31.0 2 x (40 x 5) 3530 530 3575 575
3NE1448-2/-3 850 690 31.0 2 x (40 x 8) 3630 630 3630 630
© Siemens AG 2016
90 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
Un = Rated voltage
In = Rated current
VL = Varying load factor
Ømin Cu = Required conductor cross-section Cu
Imax = Maximum permissible current
IVL = Maximum permissible current with varying load
3NE1802-0 40 690 000 1.0 10 3NP4015/
3NP4016
000 40 40 3NP4075/
3NP4076
00 40 40 3NP1123 000 40 40 3NP1133 00 40 40
3NE1803-0 35 690 000 1.0 6000 35 35 00 35 35 000 35 35 00 35 35
3NE1813-0 16 690 000 1.0 1.5 000 16 16 00 16 16 000 16 16 00 16 16
3NE1814-0 20 690 000 1.0 2.5 000 20 20 00 20 20 000 20 20 00 20 20
3NE1815-0 25 690 000 1.0 4000 25 25 00 25 25 000 25 25 00 25 25
3NE1817-0 50 690 000 1.0 10 000 50 50 00 50 50 000 50 50 00 50 50
3NE1818-0 63 690 000 1.0 16 000 63 63 00 63 63 000 63 63 00 63 63
3NE1820-0 80 690 000 1.0 25 000 80 80 00 80 80 000 80 80 00 80 80
3NE3221 100 1000 10.95 35 3NP4276 195 90 3NP4376 2100 95 3NP1143 195 90 3NP1153 2100 95
3NE3222 125 1000 10.95 50 1115 109 2125 119 1113 107 2125 119
3NE3224 160 1000 11.0 70 1150 150 2160 160 1140 140 2150 150
3NE3225 200 1000 11.0 95 1185 185 2200 200 1170 170 2180 180
3NE3227 250 1000 11.0 120 1225 225 2250 250 1200 200 2215 215
3NE3230-0B 315 1000 10.95 185 2285 285 2265 252
3NE3231 350 1000 10.95 240 2310 310 2280 266
3NE3232-0B 400 1000 10.90 240 2330 330 2310 279
3NE3233 450 1000 10.90 2 x 150 2360 360 2330 297
3NE3332-0B 400 1000 21.0 240 3NP4476 3340 340 3NP1163 3360 360
3NE3333 450 1000 21.0 2 x 150 3370 370 3390 390
3NE3334-0B 500 1000 21.0 2 x 150 3410 410 3415 415
3NE3335 560 1000 21.0 2 x 185 3450 450 3460 460
3NE3336 630 1000 21.0 2 x 185 3500 500 3500 500
3NE3337-8 710 900 21.0 2 x (40 x 5) 3510 510 3500 500
3NE3338-8 800 800 20.95 2 x 240 3520 520 3500 475
3NE3340-8 900 690 20.95 2 x (40 x 8) 3530 530 3500 475
3NE4101 32 1000 00.9 63NP4276 132 29 3NP1143 132 29
3NE4102 40 1000 00.9 10 138 34 140 36
3NE4117 50 1000 00.9 10 145 41 150 45
3NE4118 63 1000 00.9 16 159 53 160 54
3NE4120 80 1000 00.9 25 176 68 176 68
3NE4121 100 1000 00.9 35 190 81 193 84
3NE4122 125 1000 00.9 50 1115 104 1115 104
3NE4124 160 1000 00.9 70 1144 130 1144 130
3NE4327-0B 250 800 20.85 150 3NP4476 3235 210 3NP1163 3220 187
3NE4330-0B 315 800 20.85 240 3280 260 3255 217
3NE4333-0B 450 800 20.85 2 x (30 x 5) 3390 370 3355 302
3NE4334-0B 500 800 20.85 2 x (30 x 5) 3415 400 3390 332
3NE4337 710 800 20.95 2 x (50 x 5) 3480 480 3500 475
3NE8015-1 25 690 00 0.95 43NP4075/
3NP4076
00 25 24 3NP1133 00 25 24
3NE8003-1 35 690 00 0.95 600 33 31 00 35 33
3NE8017-1 50 690 00 0.90 10 00 45 41 00 50 45
3NE8018-1 63 690 00 0.95 16 00 53 50 00 60 57
3NE8020-1 80 690 00 0.95 25 00 68 65 00 72 68
3NE8021-1 100 690 00 0.95 35 3NP4075/
3NP4076
00 85 81 3NP1133 00 85 81
3NE8022-1 125 690 00 0.95 50 00 100 95 00 100 95
3NE80s24-1 160 690 00 0.95 70 00 125 120 00 115 109
SITOR fuse links Ø min Cu 3NP LV HRC fuse switch disconnectors
Busbar devices
Article No. InUnSize VL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL
AV AC mm2 A A A A
© Siemens AG 2016
91
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
Load rating of SITOR fuse links with 3KL/3KM LV HRC fuse switch disconnectors
SITOR fuse links Ø min Cu 3KL/3KM switch disconnectors with fuses
3KL... add-on devices 3KM... busbar devices
Article No. InUnSize VL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL
AV AC mm2 A A A A
3NC2423-0C/
3NC2423-3C
150 500 30.85 70 3KL61 3145 123 3KL62 3150 128
3NC2425-0C/
3NC2425-3C
200 500 30.85 95 3180 153 3190 162
3NC2427-0C/
3NC2427-3C
250 500 30.85 120 3225 191 3240 204
3NC2428-0C/
3NC2428-3C
300 500 30.85 185 3255 217 3270 230
3NC2431-0C/
3NC2431-3C
350 500 30.85 240 3330 281 3345 293
3NC2432-0C/
3NC24323C
400 500 30.85 240 3400 340 3400 340
3NC3336-1U 630 1000 30.85 2 x (40 x 5) 3KL62 3500 425 3KL61 3480 408
3NC3337-1U 710 1000 30.85 2 x (50 x 5) 3540 459
3NC3338-1U 800 1000 30.85 2 x (40 x 8) 3600 510
3NC3340-1U 900 1000 30.90 2 x (40 x 8) 3650 585
3NC3341-1U 1000 1000 30.90 2 x (50 x 8) 3720 648
3NC3342-1U 1100 800 30.90 2 x (50 x 8) 3800 720
3NC3343-1U 1250 800 30.90 2 x (50 x 8) 3800 720
3NC3430-1U 315 1250 30.95 2 x 95 3KL61 3285 271 3KL62 3300 285
3NC3432-1U 400 1250 30.95 2 x 120 3365 347 3380 361
3NC3434-1U 500 1250 30.90 2 x 150 3425 383 3450 405
3NC3436-1U 630 1250 30.95 2 x (40 x 5) 3500 475 3540 513
3NC3438-1U 800 1100 30.90 2 x (40 x 8) 3KL62 3650 618
3NC8423-0C/
3NC8423-3C
150 690 30.85 70 3KL61 3135 115 3KL62 3140 119
3NC8425-0C/
3NC8425-3C
200 690 30.85 95 3180 153 3190 162
3NC8427-0C/
3NC8427-3C
250 690 30.85 120 3225 191 3240 204
3NC8431-0C/
3NC8431-3C
350 690 30.85 240 3300 255 3315 268
3NC8434-0C/
3NC8434-3C
500 690 30.85 2 x 150 3425 361 3450 383
3NC8444-3C 1000 600 30.95 2 x (60 x 6) 3KL62 3800 760 3KL61 3630 630
3NE1020-2 80 690 00 1.0 25 3KL52 00 80 80 3KL53 00 80 80 3KM52 00 80 80
3NE1021-0 100 690 00 1.0 35 00 100 100 00 100 100 00 100 100 3KM53 00 80 80
3NE1021-2 100 690 00 1.0 35 00 100 100 00 100 100 00 100 100 00 100 100
3NE1022-0 125 690 00 1.0 50 00 125 125 00 125 125 00 125 125 00 100 100
3NE1022-2 125 690 00 1.0 50 00 125 125 00 125 125 00 125 125 00 125 125
3NE1224-0 160 690 11.0 70 3KL55 1160 160 3KL57 2160 160 3KM55 1160 160 3KM53 00 125 125
3NE1224-2/-3 160 690 11.0 70 1160 160 2160 160 1160 160 3KM57 2160 160
3NE1225-0 200 690 11.0 95 1200 200 2200 200 1200 200 2160 160
3NE1225-2/-3 200 690 11.0 95 1200 200 2200 200 1200 200 2200 200
3NE1227-0 250 690 11.0 120 1250 250 2250 250 1250 250 2200 200
3NE1227-2/-3 250 690 11.0 120 1245 245 2250 250 1245 245 2250 250
3NE1230-0 315 690 11.0 2 x 70 3KL57 2315 315 3KM57 2315 315 2250 250
3NE1230-2/-3 315 690 11.0 2 x 70 2280 280 2280 280
3NE1331-0 350 690 21.0 2 x 95 3KL57 2330 330 3KL61 3350 350 3KM57 2330 330
3NE1331-2/-3 350 690 21.0 2 x 95 2300 300 3350 350 2300 300
3NE1332-0 400 690 21.0 2 x 95 2375 375 3400 400 2375 375
3NE1332-2/-3 400 690 21.0 2 x 95 2340 340 3400 400 2315 315
3NE1333-0 450 690 21.0 2 x 120 3KL61 3450 450 3KL62 3450 450 2400 400
3NE1333-2/-3 450 690 21.0 2 x 120 3450 450 3450 500 2325 325
3NE1334-0 500 690 21.0 2 x 120 3500 500 3500 500 2400 400
3NE1334-2/-3 500 690 21.0 2 x 120 3500 500 3500 500 2350 350
3NE1435-0 560 690 31.0 2 x 150 3KL61 3560 560 3KL62 3560 560
3NE1435-2/-3 560 690 31.0 2 x 150 3560 560 3560 560
3NE1436-0 630 690 31.0 2 x 185 3630 630 3630 630
3NE1436-2/-3 630 690 31.0 2 x 185 3615 615 3630 630
3NE1437-0 710 690 31.0 2 x (40 x 5) 3630 630 3710 710
3NE1437-1 710 600 31.0 2 x (40 x 5) 3630 630 3710 710
3NE1437-2/-3 710 690 31.0 2 x (40 x 5) 3630 630 3700 700
3NE1438-0 800 690 31.0 2 x (50 x 5) 3KL61 3630 630 3KL62 3800 800
3NE1438-1 800 600 31.0 2 x (50 x 5) 3630 630 3800 800
3NE1438-2/-3 800 690 31.0 2 x (50 x 5) 3630 630 3760 760
3NE1447-2/-3 670 690 31.0 2 x (40 x 5) 3630 630 3670 670
3NE1448-2/-3 850 690 31.0 2 x (40 x 8) 3630 630 3790 790
© Siemens AG 2016
92 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
Un = Rated voltage
In = Rated current
VL = Varying load factor
Ømin Cu = Required conductor cross-section Cu
Imax = Maximum permissible current
IVL = Maximum permissible current with varying load
3NE1802-0 40 690 000 1.0 10 3KL50 00 40 40 3KL52 00 40 40 3KM50 00 40 40
3NE1803-0 35 690 000 1.0 600 35 35 00 35 35 00 35 35 3KM52 00 40 40
3NE1813-0 16 690 000 1.0 1.5 00 16 16 00 16 16 00 16 16 00 35 35
3NE1814-0 20 690 000 1.0 2.5 00 20 20 00 20 20 00 20 20 00 16 16
3NE1815-0 25 690 000 1.0 400 25 25 00 25 25 00 25 25 00 20 20
3NE1817-0 50 690 000 1.0 10 00 50 50 00 50 50 00 50 50 00 25 25
3NE1818-0 63 690 000 1.0 16 00 63 63 00 63 63 00 63 63 00 50 50
3NE1820-0 80 690 000 1.0 25 3KL52 00 80 80 3KM52 00 80 80 00 63 63
3NE3221 100 1000 10.95 35 3KL55 190 86 3KL57 295 90 3KM55 190 86
3NE3222 125 1000 10.95 50 1110 105 2115 109 1110 105 3KM57 295 90
3NE3224 160 1000 11.0 70 1140 140 2150 150 1140 140 2115 109
3NE3225 200 1000 11.0 95 1175 175 2180 180 1175 175 2150 150
3NE3227 250 1000 11.0 120 1210 210 2220 220 1210 210 2180 180
3NE3230-0B 315 1000 10.95 185 2240 228 2220 220
3NE3231 350 1000 10.95 240 2265 252 2240 228
3NE3232-0B 400 1000 10.90 240 2290 261 2265 252
3NE3233 450 1000 10.90 2 x 150 2320 288 2290 261
3NE3332-0B 400 1000 21.0 240 3KL61 3340 340 3KL62 3360 360 3KM57 2290 290 3KM57 2320 288
3NE3333 450 1000 21.0 2 x 150 3380 380 3400 400 2320 320
3NE3334-0B 500 1000 21.0 2 x 150 3440 440 3470 470 2360 360
3NE3335 560 1000 21.0 2 x 185 3500 500 3530 530 2400 400
3NE3336 630 1000 21.0 2 x 185 3540 540 3580 580 2400 400
3NE3337-8 710 900 21.0 2 x (40 x 5) 3600 600 3640 640 2400 400
3NE3338-8 800 800 20.95 2 x 240 3630 630 3720 680 2400 400
3NE3340-8 900 690 20.95 2 x (40 x 8) 3630 630 3800 750 2400 400
3NE4101 32 1000 00.9 63KL55 132 29 3KM55 132 29
3NE4102 40 1000 00.9 10 140 36 140 36
3NE4117 50 1000 00.9 10 150 45 150 45
3NE4118 63 1000 00.9 16 163 57 163 57
3NE4120 80 1000 00.9 25 180 72 180 72
3NE4121 100 1000 00.9 35 195 86 195 86
3NE4122 125 1000 00.9 50 1120 108 1120 108
3NE4124 160 1000 00.9 70 1150 135 1150 135
3NE4327-0B 250 800 20.85 150 3KL57 2175 149 3KL61 3200 170 3KM57 2175 149
3NE4330-0B 315 800 20.85 240 2230 196 3260 221 2230 196
3NE4333-0B 450 800 20.85 2 x (30 x 5) 2340 289 3370 315 2340 289
3NE4334-0B 500 800 20.85 2 x (30 x 5) 3KL61 3425 361 3KL62 3450 375 2380 323
3NE4337 710 800 20.95 2 x (50 x 5) 3600 570 3630 600 2400 400
3NE8015-1 25 690 00 0.95 43KL50 00 25 24 3KL52 00 25 24 3KM50 00 25 24
3NE8003-1 35 690 00 0.95 600 33 31 00 35 33 00 33 31 3KM52 00 25 24
3NE8017-1 50 690 00 0.90 10 00 45 41 00 50 45 00 45 41 00 35 33
3NE8018-1 63 690 00 0.95 16 00 54 51 00 60 57 00 54 51 00 50 45
3NE8020-1 80 690 00 0.95 25 3KL52 00 68 65 3KL53 00 68 65 3KM52 00 68 65 00 60 57
3NE8021-1 100 690 00 0.95 35 3KL52 00 89 85 3KL53 00 89 85 3KM52 00 89 85 3KM53 00 68 65
3NE8022-1 125 690 00 0.95 50 00 106 101 00 106 101 00 106 101 00 89 85
3NE8024-1 160 690 00 0.95 70 00 130 124 00 130 124 00 130 124 00 106 101
SITOR fuse links Ø min Cu 3KL/3KM switch disconnectors with fuses
3KL... add-on devices 3KM... busbar devices
Article No. InUnSize VL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL Article
No.
Size Imax IVL
AV AC mm2 A A A A
© Siemens AG 2016
93
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
Dimensional drawings
3NE143.-0, 3NE143.-1 3NE14. .-3 3NE12. .-3, 3NE13. .-3
Type Dimensions (mm)
a b c d e f g
3NE12. .-3 135 31 12.5 40.5 13.5 52 63.5
3NE13. .-3 149 38 19.5 47.5 15 60 72
70 151
I201_06717
10
6
60,4
82,1
68 2,5
73
70
32
70
151
I201_13936
10
6
60,4
82,1
68 2,5
73
70
32
13
13
110
32
10
73 10,5
110
12,512,5
10,5
de
f
g
af
c
b6
3NC24. .-0C, 3NC84. .-0C 3NC24. .-3C, 3NC84. .-3C
18
11,5
71,5
109
32
61
141
Ø75
6
17,6
59,4
9
10
19
I201_13719a
18
11,5
11,5
71,5
109
18
32
61
141
Ø75
6
17,6
59,4
9
10
19
I201_13721a
© Siemens AG 2016
94 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE32..-0MK, 3NE323.-0MK08
L
D
E
NM
J
K
F
B
J
H
A
e
R
Type Dimensions
I201_19436
A
52
52
60
B
52
52
60
D
78,4
78,4
137
E
106,6
106,6
165,5
F
26
26
30
H
25
25
32
J
11
11
11
K
18
18
21,5
L
137
137
196
M
15,7
15,7
15,8
N
12,5
12,5
12,8
R
22,3
22,3
22,1
e
6
6
6
3NE32..-0MK
3NE32..-0MK08
3NE53..-0MK06
© Siemens AG 2016
95
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE82..-3MK: 3NE80..-3MK:
3NE87. .-1 3NE18. .-0 3NE102.-0, 3NE102.-2, 3NE80. .-1
68,5
6
52
13 47 16
11
22,3
107
77
25
18
52
I201_19440
75
9,5
15
30
11
19,5
28
1352,9
22,5
11
102,5
50
2,5
63
I201_19437
8,5
8,5
78
100
54
I201_11343
21
40
679,9
50,3
2,3
I201_06713
10
53,3
20
35,8
15
21
40,5
53,8
53
49,4
2,2
10
I201_06714
6
48
30 79
60
35,8
15
© Siemens AG 2016
96 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE12. .-0, 3NE12. .-2 3NE133.-0, 3NE133.-2 3NE14. .-2
3NE82..-0MK, 3NE83..-0MK, 3NE88..-0MK
10
40,5
52
73
66,5
3
25
63,5
6135
52
I2_06715
I201_07071
47,5
25
72
60
60 6
10 66,5 3
73
149
73 151
I201_12427
10
6
60,4
82,1
68 2,5
73
73
32
L
D
K
B
M
A
H
J
Type Dimensions
I201_19444
A
53
62,5
68
B
21
44
50
D
51,5
70,5
70,5
H
15
20
25
J
43
53
61
K
6
6
6
L
78,5
135
150
M
35
40
48
3NE88..-0MK
3NE82..-0MK
3NE83..-0MK
© Siemens AG 2016
97
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NC32. .-1U, 3NC33. .-1U, 3NC34. .-1U 3NC32. .-6U, 3NC33. .-6U, 3NC34. .-6U
Type Dimensions (mm) Type Dimensions (mm)
a b c d a b
3NC32. .-1U 102 51 78 40 3NC32. .-6U 52 50
3NC33. .-1U 139 72 108 61 3NC33. .-6U 73 71
3NC34. .-1U 139 72 108 61 3NC34. .-6U 73 71
18
13
b
c
18
32,2
13
162
d
a
Ø
75
6
17,5
60
9
2,6
10
19
I201_13470
b
a
0,7
Ø30
M12
I201_13469
Ø75
3NE43. .-0B, 3NE4337 3NE41. . 3NE322., 3NE323., 3NE33. .
Type Dimensions (mm)
a b c d e f g
3NE322. 135 31 12.5 40.5 13.5 52 63.5
3NE323. 135 31 12.5 40.5 13.5 52 63.5
3NE33. . 149 38 19.5 47.5 15 60 72
60
71
48
10
6
60
I201_11338
10,5 14,5
11,5 12,5
14,5
11,5 12,5
107,5
141,5
73,5 10,5
10
30
6
47
15 14
65
68
125
58
I201_06450
2,5
10
73 10,5
110
12,512,5
10,5
de
f
g
af
c
b6
© Siemens AG 2016
98 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE3. . .-0C, 3NE36. .-1C 3NE3635-6
18
a
91,5
129
18
32
a
81
b
Ø75
6
17,6
59,4
9
10
19
I201_13722a
10
70
M10
70 96
109
10
81,5
I201_11340a
Ø28
Type Dimensions (mm)
a b
3NE3. . .-0C 11.5 161
3NE36. .-1C 13 171
3NB335.-1KK26 3NB3358-1KK27, 3NB3362-1KK27
13
110
72
76 34
34
6
90
13
26,51813
162
9013
34 34
76
6
110
72
90
13
252
Type InUnOperational class
Characteristic
Type InUnOperational class
Characteristic
AV AC AV AC
3NB3350-1KK26 1000 690 gR 3NB3358-1KK27 1700 690 gR
3NB3351-1KK26 1100 690 gR 3NB3362-1KK27 1900 690 gR
3NB3352-1KK26 1250 690 gR
3NB3354-1KK26 1350 690 gR
3NB3355-1KK26 1400 690 gR
3NB3357-1KK26 1600 690 gR
3NB3358-1KK26 1700 690 gR
© Siemens AG 2016
99
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE56. .-0C 3NE54. .-0C, 3NE54. .-1C;
3NE7...-0U, 3NE7...-1U
3NE96. .-1C
18
e
d
b
18
32
e
c
a
Ø75
6
17,6
59,4
9
10
19
I201_13723
18
a
171,5
209
18
32
a
161
241
Ø75
6
17,6
59,4
9
10
19
I201_13724a
18
13
219,5
257
18
32
13
208,5
289
Ø75
6
17,6
59,4
9
10
19
I201_13725a
Type Dimensions (mm) Type Dimensions (mm)
a b c d e a
3NE56. .-0C 201 169 121 131.5 11.5 3NE54. .-0C 11.5
3NE54. .-1C 13
3NE7. . .-0U 11.5
3NE7. . .-1U 13
© Siemens AG 2016
100 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE53..-0MK06 3NE5336-0MK66
3NE9330-0MK07
L
D
E
NM
J
K
F
B
J
H
A
e
R
Type Dimensions
I201_19436
A
52
52
B
52
52
D
78,4
78,4
E
106,6
106,6
F
26
26
H
25
25
J
11
11
K
18
18
L
137
137
M
15,7
15,7
N
12,5
12,5
R
22,3
22,3
3NE32..-0MK
3NE32..-0MK08
188
60
6
137
32
17
60
max. 21.5
185
191
226
I201_19443
360
302
330
22
60
32
11
12,5 15,5
11
21,5 6
60
I201_19441
© Siemens AG 2016
101
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NB1126-4KK11
3NB1128-4KK11
3NB1231-4KK11
3NB1234-4KK11
3NB1337-4KK11
3NB1345-4KK11
Type InUnOperational
class
Characteristic
Type InUnOperational
class
Characteristic
Type InUnOperational
class
Characteristic
AV DC AV DC AV DC
3NB1126-4KK11 200 1250 aR 3NB1231-4KK11 315 1250 aR 3NB1337-4KK11 500 1250 aR
3NB1128-4KK11 250 1250 aR 3NB1234-4KK11 400 1250 aR 3NB1345-4KK11 800 1250 aR
I201_19133
170
202
113
100
10,5
13
10,5
25
13
40,4
13,4 9,5
6
10
24
6
52
55,5
I201_19132
170
202
112
100
10,5
13
25
10,5
13
46,7
15,1
6
60
9,5
6
10
24
55,5
I201_19131
190
222
132
120,5
13
18
18
32
Ø75
10
6
9,1
19
59,4
17,6
6
13 55
© Siemens AG 2016
102 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NB2364-4KK17, 3NB2366-4KK17 3NB2345-4KK16,
3NB2350-4KK16,
3NB2355-4KK16,
3NB2357-4KK16
I201_19135
13
9090
18
190
18
32
13
133 49,5
39
255
18 15 15 25
75
6
Ø75
165
17,6 25,2
15
75
18
32
13
132,75 49,539,25
90
18
190
13
I201_19134
Ø75
Type InUnOperational class
Characteristic
Type InUnOperational class
Characteristic
AV DC AV DC
3NB2364-4KK17 2100 1250 aR 3NB2345-4KK16 800 1250 aR
3NB2366-4KK17 2400 1000 aR 3NB2350-4KK16 1000 1250 aR
3NB2355-4KK16 1400 1250 aR
3NB2357-4KK16 1600 1250 aR
© Siemens AG 2016
103
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NC5531 3NC58. . 3NE64. .-7, 3NE94. .-7 3NE64. ., 3NE94. .
M10
M10
SW41 91 924,5
0,3
I201_11369a
Ø50
Ø50
Ø28
M10
M24
M10
SW41 b
ac
11 I2_11370a
Ø
73
Ø
40
70
M10
70
100
125
83
10
10
81,5
75,5
I201_11372a
Ø11
Ø28
10
70
M10
70 b
a
10
81,5
I2_11371a
Ø
28
Type Dimensions (mm)
a b c
3NC5838 98 88.5 25
3NC5841 98 88.5 25
3NC5840 119 109.5 20.5
Type Dimensions
(mm)
a b
3NE6437 89 76
3NE9450 89 76
3NE9440-6 89 76
3NE6444 99 86
3NE3. . .-5 3NE41. .-5 3NE43. .-6B, 3NE4337-6 3NC73. .-2
77
55 15
60
73
60
M10
10,5
82,5
I201_11373a
Ø20
66
47
52
53
30 10
54
57
62
26
40
10,4
I201_11375a
I201_11374a
60
M10
60 76
15
77
Ø20
12,5
57
68
119
57
30
779
10,5 10,5
I201_11376a
© Siemens AG 2016
104 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NH5023, 3NH5323 3NH5423
3NH5463, 3NH5473
80
25
36 C
A
D
B
Ø14
117,5
Ø7,5
Type Dimensions
I201_19431
A
59
64
B
M8
M10
C
35,5
38
D
11
11
3NH5023
3NH5323
122
55 K
M
30
25
M10
80+1.5
0
+1.5
0
Ø10.5
I201_19432
F
25
Ø10,5
E
C
D
30
55
A
B
Type Dimensions
I201_19433
A
94
101
B
M10
M10
C
65
72
D
11
11
E
110
170
F
153
211
3NH5463
3NH5473
© Siemens AG 2016
105
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
Characteristic curves
3NC24.. series
Size: 3
Operational class: gR or aR
Rated voltage: 500 V AC
Rated current: 150 ... 400 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
[s]
[A]
p
vs
150 A 250 A 350 A
200 A 300 A 400 A
I201_10809
4
10
6
4
2
3
10
6
4
2
2
10
6
4
2
1
10
6
4
2
0
10
6
4
2
-1
10
6
4
2
84
10
4628 3
1046
-2
10
6
4
2
-3
10
2
10 2
Prospective short-circuit current
Virtual pre-arcing time
p
c
10326410
4
8
10
2
4
6
10
I201_10812
4
3
26410
5
82
2
4
6
105
[A]
[A]
150 A
200 A
250 A
300 A
350 A
400 A
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
0 100 200 300 400 500 600
1
A
w[V]
0,8
0,6
0,4
0,2
I201_10810
U
Recovery voltage
Correction factor
0.8
0.6
0.4
0.2
0 200 400 600 800
400
800
1200
s
w
1400
1000
600
200
0
I201_10811
[V]
[V]
U
Û
Recovery voltage
Peak arc voltage
© Siemens AG 2016
106 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NB33 series..
Size: 2 x 3, 3 x 3
Operational class: gR
Rated voltage: 690 V AC
Rated current: 1000 ... 1900 A
Time/current characteristics diagram
3NB33..-1KK26 3NB33..-1KK27
[s]
[A]
p
vs
1100 A
1000 A
10
2
846210
4
10
5
8462
1250 A
1350 A
1400 A
1600 A
1700 A
104
6
4
2
103
6
4
2
102
6
4
2
101
6
4
2
100
6
4
2
10-1
6
4
2
10-2
6
4
2
10-3
Prospective short-circuit current
Virtual pre-arcing time
I201_19138
104
6
4
2
103
6
4
2
102
6
4
2
101
6
4
2
100
6
4
2
10-1
6
4
2
10-2
6
4
2
10-3
10
2
84 6
210
4
10
5
8462
[s]
vs
[A]
p
1700 A
1900 A
Prospective short-circuit current
Virtual pre-arcing time
I201_19139
© Siemens AG 2016
107
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
Let-through characteristics (current limitation at 50 Hz)
3NB33..-1KK26 3NB33..-1KK27
Correction factor kA for breaking I2t value Peak arc voltage
3NB33..-1KK. 3NB33..-1KK.
24
610
5
10
3
2468
10
4
824
610
6
8
10
3
2
4
6
10
4
2
4
6
10
5
[A]
p
[A]
c
1700 A
1600 A
1400 A
1350 A
1250 A
1100 A
1000 A
Prospective short-circuit current
Peak current
I201_19140a
1900 A
1700 A
10
3
10
3
2
4
6
10
4
2
4
6
10
5
[A]
c
24
610
5
2468
10
4
824
610
6
8
[A]
p
Prospective short-circuit current
Peak current
I201_19141a
2
[A s]
Uw[V]
1,0
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0 100 200 300 400 500 700600 800 900 1000
Recovery voltage
22
Correction factor for breaking value
[A s]
t
I201_19142
2000
1500
[V]
s
Û
1000
500
0
[V]
w
U
0 100 200 300 400 500 700600 800 900 1000
Recovery voltage
Peak arc voltage
I201_19143
© Siemens AG 2016
108 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NC32 series
Size: 3
Operational class: aR
Rated voltage: 690 V AC (630 ... 1250 A),
500 V AC (1400 ... 1600 A)
Rated current: 630 ... 1600 A
Time/current characteristics diagram Let-through characteristic curves
Correction factor kA for breaking I2t value Peak arc voltage
perm. overload
Virtual melting time t
vs
[s]
Prospective short-circuit current
1600 A
1400 A
1250 A
1100 A
1000 A
900 A
800 A
710 A
630 A
[A]
I201_13402
p
2
4
6
5
108642
4
108642
32
-3
10864210
10
-2
10
2
4
6
-1
10
2
4
6
0
10
2
4
6
1
10
2
4
6
2
10
2
4
6
3
10
2
4
6
4
10
p
c
3
10
10 2 4 6 8 4
10 2 4 6 8 5
10
2
4
6
10 4
3
2
4
6
10 5
[A]
I
[A]
1600 A
1400 A
1250 A
1100 A
1000 A
900 A
800 A
710 A
630 A
I
I201_13405a
Prospective short-circuit current
Let-through current
U
0100 200 300 400 500 600
1
700 800
w[V]
I201_13403
= 500 V
n
U
= 690 V
n
U
Recovery voltage
0,2
0,4
0,6
0,8
22
Correction factor for breaking value [A s]t
0 200 400 600 800
400
200
600
800
1200
1000
1400
1600
0
I201_13404
[V]
w
[V]
s
U
Û
Recovery voltage
Peak arc voltage
© Siemens AG 2016
109
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NC33 series
Size: 3
Operational class: aR
Rated voltage: 1000 V AC (630 ... 1000 A),
800 V AC (1100 ... 1250 A)
Rated current: 630 ... 1250 A
Time/current characteristics diagram Let-through characteristic curves
Correction factor kA for breaking I2t value Peak arc voltage
[s]
vs
10
4
6
4
2
10
3
6
4
2
10
2
6
4
2
10
1
6
4
2
10
0
6
4
2
10
-1
6
4
2
10
-2
6
4
2
10
-3
10
2
2
630 A
710 A
800 A
900 A
1100 A
1000 A
1250 A
[A]
p
810
3
46 846210
4
10
5
8462
Prospective short-circuit current
Virtual melting time
Melting
Permissible overload
I201_19110
p
c
3
10
10 2 4 6 8 4
10 2 4 6 8 5
10
2
4
6
10
I201_13409
4
3
2
4
6
10 5
[A]
[A]
1250 A
1100 A
1000 A
900 A
800 A
710 A
630 A
Prospective short-circuit current
Let-through current
U
0200 400 600
1
800 1000
w
[V]
I201_13407
= 800 V
n
U
= 1000 V
n
U
22
Correction factor for breaking -value [A s]t
Recovery voltage
0,2
0,4
0,6
0,8
0 200 400 600 800 1000 1200
400
800
1600
2000
1200
2400
2600
0
I201_13408
[V]
w
[V]
s
U
Û
Recovery voltage
Peak arc voltage
© Siemens AG 2016
110 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NC34 series
Size: 3
Operational class: aR
Rated voltage: 1250 V AC (315 ... 630 A),
1100 V AC (800 A)
Rated current: 315 ... 800 A
Time/current characteristics diagram Let-through characteristic curves
Correction factor kA for breaking I2t value Peak arc voltage
800 A
630 A
315 A
400 A
500 A
[s]
vs
10
4
6
4
2
10
3
6
4
2
10
2
6
4
2
10
1
6
4
2
10
0
6
4
2
10
-1
6
4
2
10
-2
6
4
2
10
-3
10
2
[A]
p
810
3
462846210
4
10
5
8462
Prospective short-circuit current
Virtual melting time
Melting
Permissible overload
I201_19091
Prospective short-circuit current
Let-through current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_17058
800 A
630 A
500 A
400 A
315 A
p
3
10 2 4 6 8 4
10 2 2468
5
10
[A]
I
c
10
2
4
6
10 4
3
2
4
6
10 5
[A]
I
U
200 400 600 800 1000
1
1200 1400
w[V]
I201_17059
800 A
315 A ... 630 A
Recovery voltage
22
Correction factor for breaking value [A s]t
0.4
0.6
0.8
0.2
0 200 400 600 800 1000 1400
500
2000
2500
1000
1500
3000
0
I201_17060
[V]
w
[V]
s
U
Û
1200
Recovery voltage
Peak arc voltage
© Siemens AG 2016
111
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NC5531, 3NC58.. series
Operational class: aR
Rated voltage: 800 V AC (350 A, 630 A),
1000 V AC (600 A, 800 A)
Rated current: 350 ... 800 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_11432
6105
8
[s]
[A]
800 A630 A
350 A
600 A
Virtual pre-arcing time
Prospective short-circuit current
c
p[A]
[A]
I201_11433
103
10
2
4
6
2
4
6
4
105
103
10524
1042648
2648
350 A
600 A
630 A
800 A
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
0200 400 600
1
800 1000
A
w[V]
I201_11434
350 A
630 A 600 A
800 A
U
Correction factor
0.8
0.6
0.4
0.2
Recovery voltage
0 200 400 600 800 1000 1200
400
1200
1600
2000
0
s
w[V]
[V]
I201_11435
200
600
800
1000
1400
1800
600 A
800 A
350 A
630 A
Û
U
Peak arc voltage
Recovery voltage
© Siemens AG 2016
112 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NC73..-2 series
Operational class: aR
Rated voltage: 680 V AC
Rated current: 250 A, 350 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_11449
6105
8
[s]
[A]
250 A
350 A
Virtual pre-arcing time
Prospective short-circuit current
c
p[A]
[A]
I201_11450
103
10
2
4
6
2
4
6
4
105
103
10524
1042648
2648
250 A
350 A
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
0100 200 300 400 500 600
1
700 800
A
w[V]
I201_11451
U
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
Û
U
0 200 400 600 800 1000 1200
400
1200
1600
2000
0
s
w[V]
[V]
I201_11452
200
600
800
1000
1400
1800
Peak arc voltage
Recovery voltage
© Siemens AG 2016
113
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NC84.. series
Size: 3
Operational class: gR or aR
Rated voltage: 660 V AC
Rated current: 150 ... 1000 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10821
6105
8
500 A
350 A
250 A
200 A
1000 A
150 A
[A]
[s]
Virtual pre-arcing time
Prospective short-circuit current
10 2264108
10
2
4
6
2
4
6
4
c
p[A]
[A]
10 5
10 3
32641084264108524
150 A
200 A
250 A
350 A
500 A
1000 A
I201_10824a
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
0100 200 300 400 500 600
1
700 800
A
w
1000 A
150 ... 500 A
[V]
I201_10822
U
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
Û
0 200 400 600 800
400
800
1200
s
w
1400
1000
600
200
0
I201_10823
1000 A
150 ... 500 A
[V]
[V]
U
Recovery voltage
Peak arc voltage
© Siemens AG 2016
114 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE102.-0, 3NE12..-0 series
Size: 00, 1
Operational class: gS
Rated voltage: 690 V AC
Rated current: 100 ... 315 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
8
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10829
250 A
200 A
160 A
125 A
100 A
315 A
[s]
[A]
Virtual pre-arcing time
Prospective short-circuit current
p
c
10326410
4
8
10
2
4
6
10
I201_10831
4
3
26410
5
82
2
4
6
105
[A]
[A]
100 A
200 A
250 A
315 A
125/160 A
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
U
0100 200 300 400 500 600
1
700 800
A
w
3NE1 2..-0
3NE1 02.-0
[V]
I201_10830
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
Û
200 400 500 600 700 800100
s
w
300
1400
1200
1000
800
600
400
200
0
[V]
[V]
0
U
I201_10827
Peak arc voltage
Recovery voltage
© Siemens AG 2016
115
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE102.-2, 3NE12. .-2, 3NE12. .-3, 3NE13. .-2, 3NE13. .-3 series
Size: 00, 1, 2
Operational class: gR
Rated voltage: 690 V AC
Rated current: 80 ... 500 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
10-3
10-2
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
6
104
2
4
[s]
tVS
24
A
p
105
246
104
246
103
102
I201_10839a
80 A
100 A
125 A
160 A
200 A
250 A
315 A
350 A
400 A
450 A
500 A
Virtual pre-arcing time
Prospective short-circuit current
10
2
10
3
10
4
10
A
5
10
3
2
4
6
10
4
10
5
2
4
6
A
246 246 246
p
I201_10842a
C
160 A
125 A
100 A
80 A
500 A
450 A
400 A
350 A
315 A
250 A
200 A
Prospective short-circuit current
Peak let-through current
I201_10840
0
0
100 200 300 400 500 600 700 800
1
80 A - 125 A
160 A - 315 A
350 A - 500 A
Recovery voltage
Correction factor
0,2
0,4
0,6
0,8
I201_10841
2000
400
800
1200
1600
8002000
0
400 600
160...315 A
80...125 A
350...500 A
Peak arc voltage
Recovery voltage
© Siemens AG 2016
116 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE133.-0, 3NE143.-0 series
Size: 2, 3
Operational class: gS
Rated voltage: 690 V AC
Rated current: 350 ... 800 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
800 A
710 A
630 A
560 A
500 A
450 A
400 A
350 A
p
vs
10
-3
2
4
6
10
-2
2
4
6
10
-1
2
4
6
10
0
2
4
6
10
1
2
4
6
10
2
2
4
6
10
3
2
4
6
10
4
210
2
6410
3
82 6410
4
8246
10
5
8
Virtual pre-arcing time
Prospective short-circuit current
I201_10832
p
c
10326410
4
8
10
2
4
6
10
I201_10834
4
3
26410
5
82
2
4
6
105
[A]
[A]
350 A
400 A
450 A
500 A
560 A
630 A
710 A
800 A
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
U
0100 200 300 400 500 600
1
700 800
A
w[V]
I201_10833
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
Û
200 400 500 600 700 800100
s
w
300
1400
1200
1000
800
600
400
200
0
[V]
[V]
0
U
I201_10827
Peak arc voltage
Recovery voltage
© Siemens AG 2016
117
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE14..-2, 3NE14..-3 series
Size: 3
Operational class: gR
Rated voltage: 690 V AC
Rated current: 560 ... 850 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
10 -3
10 -2
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
6
10 4
2
4
[s]
tVS
246
p
10 5
246
10 4
246
10 3
10 2
I201 10843
560 A
630 A
670 A
710 A
800 A
850 A
Virtual pre-arcing time
Prospective short-circuit current
10 210 310 410 5
10 3
2
4
6
10 4
10 5
2
4
6
246 246 246
p
I201_10846
C
850 A
800 A
710 A
670 A
630 A
560 A
Prospective short-circuit current
Peak let-through current
0
0
100 200 300 400 500 600 700 800
1
I201_10844
Recovery voltage
Correction factor
0.2
0.4
0.6
0.8
I201_10845
2000
400
800
1200
1600
8002000
0
400 600
Peak arc voltage
Recovery voltage
© Siemens AG 2016
118 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE1437-1, 3NE1438-1 series
Size: 3
Operational class: gR
Rated voltage: 600 V AC
Rated current: 710 and 800 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10835
6105
8
710 A
800 A
[A]
[s]
Virtual pre-arcing time
Prospective short-circuit current
p
c
10326410
4
8
10
2
4
6
10
I201_10838
5
4
26410
5
82
[A]
[A]
710 A
800 A
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
U
0100 200 300 400 500 600
1
700 800
A
w[V]
I201_10836
0,2
0,4
0,6
0,8
Correction factor
Recovery voltage
Û
U
200 400 500 600 700 800100
s
w
300
1400
1200
1000
800
600
400
200
0[V]
[V]
0
I201_10837
Peak arc voltage
Recovery voltage
© Siemens AG 2016
119
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE18..-0 series
Size: 000
Operational class: gS
Rated voltage: 690 V AC
Rated current: 16 ... 80 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10825
6104
8
40 A
35 A
25 A
20 A
16 A
50 A
63 A
80 A
[A]
[s]
Virtual pre-arcing time
Prospective short-circuit current
10 2264108
10
2
4
6
2
4
6
3
c
p
[A]
[A]
10 4
10 2
32641084264108524
20 A
25 A
35 A
40 A
50 A
63 A
16 A
80 A
I201_10828a
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
0100 200 300 400 500 600
1
700 800
A
w[V]
I201_10826
0,2
0,4
0,6
0,8
Correction factor
Recovery voltage
Û
200 400 500 600 700 800100
s
w
300
1400
1200
1000
800
600
400
200
0
[V]
[V]
0
U
I201_10827
Peak arc voltage
Recovery voltage
© Siemens AG 2016
120 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE32..-0MK series
Size: 1
Operational class: gR
Rated voltage: 1000 V AC/600 V DC
Rated current: 32 ... 63 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
2
101246810
3246810
4
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
63 A
50 A
40 A
32 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19419
p
10 3
10 210 4
10 310 510 6
246 246 246 246
C
10 4
2
4
6
10 2
2
4
6
10 5
2
4
6
10 6
2
4
6
63 A
50 A
40 A
32 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19420
1
400
0
500 600 700 800 900 1000 1100 1200
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19423
1200
1600
2000
2400
2800
1200600400
800
800 1000
Peak arc voltage
Recovery voltage
I201_19424
© Siemens AG 2016
121
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE322. series
Size: 1
Operational class: aR
Rated voltage: 1000 V AC
Rated current: 100 ... 250 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10859
6104
8
100 A
125 A
160 A
[s]
[A]
200 A
250 A
Virtual pre-arcing time
Prospective short-circuit current
102264108
10
2
4
6
2
4
6
3
c
p[A]
[A]
104
102
32641084264108524
I201_10862
2
100 A
125 A
160 A
200 A
250 A
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
U
0200 400 600
1
800 1000
A
w[V]
I201_10860
0,8
0,6
0,4
0,2
Correction factor
Recovery voltage
Û
U
0 200 400 600 800 1000 1200
500
1000
1500
2000
2500
0
s
w[V]
[V]
I201_10861
Peak arc voltage
Recovery voltage
© Siemens AG 2016
122 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE323. series
Size: 1
Operational class: aR
Rated voltage: 1000 V AC
Rated current: 315 ... 450 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
I201_10863a
p
vs
210 2
10 -3
2
4
6
10 -2
6410
3
826410 4
8
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
10 4
450 A
[A]
400 A
350 A
315 A
[s]
Virtual pre-arcing time
Prospective short-circuit current
p
c
10326410
4
8
10
2
4
6
10
I201_10864
4
3
26410
5
82
2
4
6
105
[A]
[A]
315 A
350 A
400 A
450 A
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
U
0200 400 600
1
800 1000
A
w[V]
I201_10860
0,8
0,6
0,4
0,2
Correction factor
Recovery voltage
Û
U
0 200 400 600 800 1000 1200
500
1000
1500
2000
2500
0
s
w[V]
[V]
I201_10861
Peak arc voltage
Recovery voltage
© Siemens AG 2016
123
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE323.-0MK08 series
Size: 1
Operational class: aR
Rated voltage: 1000 V AC/600 V DC
Rated current: 500 ... 630 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
3
102246810
4246810
5
[A]
p
2
4
6
2
4
6
2
4
6
10-3
10-4
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
630 A
550 A
500 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19421
p
10 3
10 210 4
10 310 510 6
246 246 246 246
C
10 4
2
4
6
10 2
2
4
6
10 5
2
4
6
10 6
2
4
6
630 A
550 A
500 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19422
1
400
0
500 600 700 800 900 1000 1100 1200
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19423
1200
1600
2000
2400
2800
1200600400
800
800 1000
Peak arc voltage
Recovery voltage
I201_19424
© Siemens AG 2016
124 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE33.. series
Size: 2
Operational class: aR
Rated voltage: 1000 V AC (up to 630 A)
900 V AC (710 A)
800 V AC (800 A)
690 V AC (900 A)
Rated current: 400 ... 900 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10865
6105
8
400 A
450 A
500 A
[s]
[A]
560 A
630 A
710 A
800 A
900 A
Virtual pre-arcing time
Prospective short-circuit current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
p
c
10326410
4
8
10
2
4
6
400 A
10
I201_10867
4
3
26410
5
82
2
4
6
105
450 A
500 A
560 A
630 A
710 A
800 A
900 A
[A]
[A]
0200 400 600
1
800 1000
A
w[V]
I201_10866
710 A
400 ... 630 A
900 A
U
800 A
Correction factor
0.8
0.6
0.4
0.2
Recovery voltage
Û
U
0 200 400 600 800 1000 1200
500
1000
1500
2000
2500
0
s
w[V]
[V]
I201_10861
Peak arc voltage
Recovery voltage
© Siemens AG 2016
125
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE34.., 3NE36.. series
Size: 3
Operational class: aR
Rated voltage: 1000 V AC
Rated current: 100 ... 710 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
Virtual pre-arcing time
Prospective short-circuit current p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10868
6105
8
100 A
224 A
315 A
[s]
[A]
400 A
450 A
500 A
630 A
710 A
c[A]
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
p
10326410
4
8
I201_10871
264 105
82
[A]
68
100 A
224 A
315 A
400 A
450 A
500 A
630 A
710 A
10
2
4
6
10
4
3
2
4
0,8
0,6
0,4
0,2
Correction factor
Recovery voltage
0200 400 600
1
800 1000
A
w[V]
I201_10869
U
Peak arc voltage
Recovery voltage
Û
U
0 200 400 600 800 1000 1200
400
800
1200
2000
0
s
w
[V]
[V]
I201_10870
200
600
1000
1400
1600
1800
© Siemens AG 2016
126 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE35.5-5, 3NE41..-5 series
Operational class: aR, gR
Rated voltage: 800 V AC (170 A)
1000 V AC (50 A, 100 A, 200 A, 450 A)
Rated current: 50 ... 450 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_11441
6104
8
[s]
[A]
170 A
50 A 100 A 200 A 450 A
Virtual pre-arcing time
Prospective short-circuit current
102264108
10
2
4
6
3
c
p[A]
[A]
102
32641084264108524
I201_11442
10
2
4
6
4
2
4
100 A
200 A
170 A
50 A
450 A
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
U
0200 400 600 800 1000
A
w[V]
I201_11443
50/100 A
170 A
200/450 A
1
0,8
0,6
0,4
0,2
Correction factor
Recovery voltage
U
0 200 400 600 800 1000 1200
400
1200
1600
2000
0
s
w[V]
[V]
I201_11444
200
600
800
1000
1400
1800
200 A
170 A
Û
Peak arc voltage
Recovery voltage
© Siemens AG 2016
127
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE41.. series
Size: 0
Operational class: gR or aR
Rated voltage: 1000 V AC
Rated current: 32 ... 160 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10855
6104
8
100 A
80 A
63 A
50 A
40 A
32 A
125 A
160 A
[s]
[A]
Virtual pre-arcing time
Prospective short-circuit current
102264108
10
2
4
6
100 A
2
4
6
3
125 A
c
p[A]
[A]
104
102
32641084264108524
32 A
I201_10858
40 A
50 A
160 A
63 A
80 A
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
U
0200 400 600
1
800 1000
A
w[V]
I201_10856
0,8
0,6
0,4
0,2
Correction factor
Recovery voltage
Û
U
0 200 400 600 800 1000 1200
500
1000
1500
2000
2500
0
s
w[V]
[V]
I201_10857
Peak arc voltage
Recovery voltage
© Siemens AG 2016
128 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE43. .-0B, 3NE43. .-6B, 3NE4337, 3NE4337-6 series
Size: 2
Operational class: aR
Rated voltage: 800 V AC
Rated current: 250 ... 710 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10851
6105
8
250 A
315 A
450 A
500 A
710 A
[A]
[s]
Virtual pre-arcing time
Prospective short-circuit current
p
c
10326410
4
8
10
2
4
6
10
I201_10854
4
3
26410
5
82
2
4
6
105
[A]
[A]
710 A
500 A
450 A
315 A
250 A
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
U
0100 200 300 400 500 600
1
700 800
A
w
450 A
315 A
[V]
I201_10852
0,2
0,4
0,6
0,8
Correction factor
Recovery voltage
Û
0 200
w
s
2000
1800
1000
800
400
200
400 600 800
I201_10853
600
1200
1400
1600
1000
[V]
[V]
0
U
Peak arc voltage
Recovery voltage
© Siemens AG 2016
129
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE53..-0MK06, -MK66 series
Size: 2
Operational class: gR, aR
Rated voltage: 1500 V AC/1000 V DC
Rated current: 40 ... 630 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
p
10 110 3
10 210 410 5
246246246246
10 4
2
4
6
10 3
2
4
6
10 2
2
4
6
10 1
2
4
6
10 0
2
4
6
10 -1
2
4
6
10 -2
2
4
6
10 -3
2
4
6
10 -4
630 A
500 A
400 A
315 A
250 A
200 A
160 A
125 A
100 A
80 A
63 A
50 A
40 A
[s]
vs
Prospective short-circuit current
Virtual pre-arcing time
I201_19425
Un = AC 1500 V / 1800 V
p
10 2
10 210 4
10 310 510 6
246 246 246 246
C
10 3
2
4
6
10 1
2
4
6
10 4
2
4
6
10 5
2
4
6
630 A
500 A
400 A
315 A
250 A
200 A
160 A
125 A
100 A
80 A
63 A
50 A
40 A
Peak let-through current
Prospective short-circuit current
I201_19426
© Siemens AG 2016
130 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE54.. series
Size: 3
Operational class: aR
Rated voltage: 1500 V AC
Rated current: 160 ... 450 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
Virtual pre-arcing time
Prospective short-circuit current p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10872
6105
8
160 A
224 A
315 A
[s]
[A]
350 A
450 A
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current c[A]
p
10326410
4
I201_10875
264 105
82
[A]
8
160 A
224 A
315 A
350 A
450 A
2
4
6
104
3
2
4
10
Correction factor
0.2
0.4
0.6
0.8
Recovery voltage U
0500
1
15001000
w
A
[V]
I201_10873
0,2
0,4
0,6
0,8
Peak arc voltage
Recovery voltage
Û
U
0 1200800400 1600 2000
800
2400
4000
0
s
w[V]
[V]
I201_10874
400
1200
2000
2800
3200
3600
1600
© Siemens AG 2016
131
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE56.. series
Size: 3
Operational class: aR
Rated voltage: 1500 V AC
Rated current: 250 ... 600 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
Virtual pre-arcing time
Prospective short-circuit current p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10876
6105
8
[s]
[A]
250 A
450 A
600 A
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
p
10326410
4
I201_10877
264 105
82
[A]
8
250 A
450 A
600 A
c[A]
10
2
4
6
10
4
3
2
4
Correction factor
0.2
0.4
0.6
0.8
Recovery voltage U
0500
1
15001000
w
A
[V]
I201_10873
0,2
0,4
0,6
0,8
Peak arc voltage
Recovery voltage
Û
U
0 1200800400 1600 2000
800
2400
4000
0
s
w[V]
[V]
I201_10874
400
1200
2000
2800
3200
3600
1600
© Siemens AG 2016
132 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE64.., 3NE94.. series
Operational class: aR, gR
Rated voltage: 600 V AC (850 A, 1250 A),
900 V AC (710 A, 900 A)
Rated current: 710 ... 1250 A
Time/current characteristics diagrams
Virtual pre-arcing time
Prospective short-circuit current
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_11436
6105
8
[s]
[A]
850 A
710 A
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_11437
6105
8
[s]
[A]
1250 A
900 A
Virtual pre-arcing time
Prospective short-circuit current
© Siemens AG 2016
133
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
Series 3NB1.., 3NB2..
Size: 1L, 2L, 3L, 2 x 2L, 2 x 3L, 3 x 3L,
Operational class: aR
Rated voltage: 1250 V DC
Rated current: 200 ... 2400 A
Time/current characteristics diagram
3NB1...-4KK11 3NB2...-4KK1.
Let-through characteristic curves
3NB1...-4KK11 3NB2...-4KK1.
101
6
4
2
100
6
4
2
10-1
6
4
2
10-2
6
4
2
10-3
10
3
846210
4
10
5
8462
500 A
800 A
400 A
315 A
250 A
200 A
[A]
p
[s]
vs
Prospective short-circuit current
Virtual pre-arcing time
I201_19150
2100 A
2400 A
1600 A
1400 A
1000 A
800 A
101
6
4
2
100
6
4
2
10-1
6
4
2
10-2
6
4
2
10-3
10
3
846210
4
10
5
8462
[A]
p
[s]
vs
Prospective short-circuit current
Virtual pre-arcing time
I201_19151
[A]
p
[A]
c
800 A
500 A
400 A
315 A
200 A
250 A
10
3
2
4
6
10
4
2
4
6
10
5
24
610
5
10
3
2468
10
4
824
610
6
8
Prospective short-circuit current
Peak current
I201_19148a
[A]
p
[A]
c
2400 A
2100 A
1600 A
1400 A
1000 A
800 A
10
3
2
4
6
10
4
2
4
6
10
5
24
610
5
10
3
2468
10
4
824
610
6
Prospective short-circuit current
Peak current
I201_19149a
© Siemens AG 2016
134 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
Correction factor kA for breaking I2t value Peak arc voltage
3NB1...-4KK11
3NB2...-4KK1.
3NB1...-4KK11
3NB2...-4KK1.
0,9
1,0
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0,0
100 200 400 600 800 1000 1400 1600 1800 20001200
Uw[V]
Recovery voltage
22
Correction factor for breaking value
[A s]
t
I201_19152
[V]
s
Û
2000
1500
3000
2500
1000
500
0
0 200 400 600 800 1000 14001200 1600 1800
[V]
w
U
Recovery voltage
Peak arc voltage
I201_19153
© Siemens AG 2016
135
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE64.., 3NE94.. series
Operational class: aR, gR
Rated voltage: 600 V AC (850 A, 1250 A),
900 V AC (710 A, 900 A)
Rated current: 710 ... 1250 A
Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
c
p[A]
[A]
I201_11438
103
10
2
4
6
2
4
6
4
10
5
10
3
10524
1042648
2648
710 A
850/900/
1250 A
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
0200 400 600
1
800 1000
A
w[V]
I201_11439
900 A
800 A
1250 A
710 A
U
0,8
0,6
0,4
0,2
Correction factor
Recovery voltage
U
0 200 400 600 800 1000 1200
400
1200
1600
2000
0
w[V]
[V]
I201_11440
200
600
800
1000
1400
1800
850 A
710 A
900 A
1250 A
Ûs
Peak arc voltage
Recovery voltage
© Siemens AG 2016
136 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE74.., 3NE76.. series
Size: 3
Operational class: aR
Rated voltage: 2000 V AC
Rated current: 200 ... 710 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
Virtual melting time tvs [s]
Prospective short-circuit current
perm. overload
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10878
6105
8
200 A
250 A
350 A
400 A
450 A
525 A
630 A
710 A
[A]
p
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
p
c
10326410
4
8
10
2
4
6
200 A
10
I201_10881
4
3
26410
5
82
2
4
6
105
250 A
[A]
[A]
350 A
400/450 A
525 A
630 A
710 A
0,2
0,4
0,6
0,8
Correction factor
Recovery voltage U
0500
1
15001000
w
A
[V]
2000
I201_10879
Peak arc voltage
Recovery voltage
Û
U
0 400 800 1200 1600 2000 2400
800
2400
4000
0
s
w
[V]
[V]
I201_10880
400
2000
2800
3200
3600
1200
1600
© Siemens AG 2016
137
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE80..-1 series
Size: 00
Operational class: gR or aR
Rated voltage: 690 V AC
Rated current: 25 ... 160 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10847
6104
8
100 A
80 A
63 A
50 A
35 A
25 A
125 A
160 A
[A]
[s]
Virtual pre-arcing time
Prospective short-circuit current
102264108
10
2
4
6
2
4
6
3
c
p[A]
[A]
104
102
32641084264108524
25 A
I201_10850
35 A
50 A
63 A
80 A
100 A
125 A
160 A
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
U
0100 200 300 400 500 600
1
700 800
A
w[V]
I201_10848
0,2
0,4
0,6
0,8
Correction factor
Recovery voltage
U
0 200
w
s
2000
1800
1000
800
400
200
400 600 800
I201_10849
600
1200
1400
1600
[V]
[V]
0
Û
Peak arc voltage
Recovery voltage
© Siemens AG 2016
138 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE80..-3MK series
Size: 00
Operational class: gR/aR
Rated voltage: 690 V AC/440 V DC
Rated current: 80 A, 100 A, 350 A, 400 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
2246810
3246810
4
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
400 A
350 A
100 A
80 A
104
101
Prospective short-circuit current
Virtual pre-arcing time
I201_19401
p
10 2
10 110 3
10 210 410 5
246 246 246 246
C
10 3
2
4
6
10 1
2
4
6
10 4
2
4
6
10 5
2
4
6
400 A
350 A
100 A
80 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19404
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19405
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19406
© Siemens AG 2016
139
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE82..-0MK series
Size: 1
Operational class: aR
Rated voltage: 690 V AC/440 V DC
Rated current: 100 ... 315 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
2
101246810
3246810
4
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
315 A
250 A
200 A
160 A
125 A
100 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19411
p
10 3
10 210 4
10 310 510 6
246 246 246 246
C
10 4
2
4
6
10 2
2
4
6
10 5
2
4
6
10 6
2
4
6
315 A
250 A
200 A
160 A
125 A
100 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19412
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
1.3
I201_19417
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19418
© Siemens AG 2016
140 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE82..-3MK series
Size: 1
Operational class: aR
Rated voltage: 690 V AC/440 V DC
Rated current: 100 ... 630 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
3
102
246810
4246810
5
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
630 A
550 A
500 A
450 A
400 A
350 A
315 A
250 A
200 A
160 A
125 A
100 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19402
p
10 3
10 210 4
10 310 510 6
246 246 246 246
C
10 4
2
4
6
10 2
2
4
6
10 5
2
4
6
10 6
2
4
6
630 A
550 A
500 A
450 A
400 A
350 A
315 A
250 A
200 A
160 A
125 A
100 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19403
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
1.3
I201_19407
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19408
© Siemens AG 2016
141
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE83..-0MK series
Size: 2
Operational class: aR
Rated voltage: 690 V AC/440 V DC
Rated current: 350 ... 630 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
3
102246810
4246810
5
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
630 A
550 A
500 A
450 A
400 A
350 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19413
p
10 3
10 210 4
10 310 510 6
246 246 246 246
C
10 4
2
4
6
10 2
2
4
6
10 5
2
4
6
10 6
2
4
6
630 A
550 A
500 A
450 A
400 A
350 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19414
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
1.3
I201_19417
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19418
© Siemens AG 2016
142 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE870.-1, 3NE871.-1 series
Size: 000
Operational class: gR or aR
Rated voltage: 690 V AC/700 V DC
Rated current: 20 ... 63 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
2101
10-3
2
4
6
10-2
6410
2
82 64103
8
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10813
50 A
32 A
20 A
40 A
25 A
vs
p[A]
[s]
63 A
Virtual pre-arcing time
Prospective short-circuit current
102264108
10
2
4
6
2
4
6
3
c
p[A]
[A]
104
102
32641084264108524
20 A
I201_10816
25 A
32 A
40 A
50 A
63 A
Let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
U
0100 200 300 400 500 600
1
700 800
A
w[V]
0.2
0.4
0.6
0.8
I201_10814
Correction factor
Recovery voltage
Û
U
200 400 500 600 700 800100
s
w
300
1400
1200
1000
800
600
400
200
0
[V]
[V]
0
I201_10815
Peak arc voltage
Recovery voltage
© Siemens AG 2016
143
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE872.-1, 3NE8731-1 series
Size: 000
Operational class: aR
Rated voltage: 690 V AC/700 V DC according to UL
Rated current: 80 ... 315 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
2101
10-3
2
4
6
10-2
6410
2
82 64103
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10817
6104
8
250 A
200 A
160 A
125 A
100 A
80 A
315 A
vs
p[A]
[s]
Virtual pre-arcing time
Prospective short-circuit current
10
2
4
6
2
4
6
4
c[A]
105
103
I201_10820
6
80 A
100 A
125 A
160 A
200 A
250 A
315 A
10226410832641084264108524
p[A]
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
U
0100 200 300 400 500 600
1
700 800
A
w[V]
I201_10818
0,2
0,4
0,6
0,8
Correction factor
Recovery voltage
Û
U
200 400 500 600 700 800100
s
w
300
1400
1200
1000
800
600
400
200
0
[V]
[V]
0
I201_10819
Peak arc voltage
Recovery voltage
© Siemens AG 2016
144 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE88..-0MK series
Size: 000
Operational class: gR/aR
Rated voltage: 500 ... 690 V AC/440 V DC
Rated current: 6 ... 160 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
2
101246810
3246810
4
[A]
p
2
4
6
2
4
6
2
4
6
10-3
10-4
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
160 A
125 A
100 A
80 A
63 A
50 A
40 A
32 A
25 A
20 A
16 A
10 A
6 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19409
p
10 2
10 110 3
10 210 410 5
246 246 246 246
C
10 3
2
4
6
10 1
2
4
6
10 4
2
4
6
10 5
2
4
6160 A
125 A
100 A
80 A
63 A
50 A
40 A
32 A
25 A
20 A
16 A
10 A
6 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19410
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19415
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19416
© Siemens AG 2016
145
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
LV HRC design
3NE93..-0MK07 series
Size: 2
Operational class: aR
Rated voltage: 3000 V DC
Rated current: 315 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
246810
3
10
2
246810
4246810
5
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
315 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19427
p
10 2
10 210 4
10 310 5
246 246 246 2
C
10 3
2
4
6
10 4
2
4
6
10 5
2
4
6
315 A
Peak let-through current
Prospective short-circuit current
I201_19428
© Siemens AG 2016
146 Siemens · 10/2015
LV HRC design
Fuse Systems
SITOR Semiconductor Fuses
3NE963. series
Size: 3
Operational class: aR
Rated voltage: 2500 V AC
Rated current: 400 ... 630 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
p
vs
2102
10-3
2
4
6
10-2
6410
3
82 64104
824
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I201_10882
6105
8
[s]
[A]
400 A
500 A
630 A
Virtual pre-arcing time
Prospective short-circuit current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
Let-through current
p
c
10326410
4
8
10
2
4
6
10
I201_10885
4
3
26410
5
82
2
4
6
105
[A]
[A]
400 A
500 A
630 A
0.8
0.6
0.4
0.2
Recovery voltage
Correction factor
A
I201_10883
[V]
w
U
2800
2400
2000
1600
1200
800
400
0
1
Recovery voltage
Peak arc voltage
I201_10884
5000
4000
3000
1000
2000
[V]
[V]
w
s
0
6000
300025002000150010005000
U
U
© Siemens AG 2016
147
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
Overview
SITOR cylindrical fuses protect power semiconductors from
the effects of short-circuits because the super quick-response
disconnect characteristic is far quicker than that of conventional
fuses. They protect expensive devices and system components
such as solid-state contactors, electronic relays (solid state),
converters with fuses in the input and in the DC link,
UPS systems and soft starters for motors up to 100 A.
The cylindrical design is approved for industrial applications.
The cylindrical fuse links comply with IEC 60269.
Cylindrical fuse holders also comply with IEC 60269 and
UL 512. The cylindrical fuse holders for 10 x 38 mm and
14 x 51 mm have been tested and approved as fuse switch
disconnectors and the cylindrical fuse holders for 22 x 58 mm
as fuse disconnectors according to the switching device stan-
dard IEC 60947-3. The utilization category and the tested cur-
rent and voltage values are specified in the Table "Technical
Specifications".
The cylindrical fuse holders have been specially developed for
the application of SITOR fuse links with regard to heat tolerance
and heat dissipation and are therefore not recommended for
standard applications.
Cylindrical fuse bases do not offer the same comprehensive
touch protection as the fuse holders, but have better heat dissi-
pation. The single-pole cylindrical fuse bases for 14 ×51 mm
and 22 × 58 mm allow modular expansion to multi-pole bases.
Benefits
Cylindrical fuses have an extremely compact design and a
correspondingly small footprint
The cylindrical fuses have IEC and UL approval and are
suitable for universal use worldwide
The use of SITOR cylindrical fuses in the cylindrical fuse
holders and bases has been tested with regard to heat dissi-
pation and maximum current loading. This makes planning
and dimensioning easier and prevents consequential damage
The use of fuse holders as switch disconnectors expands the
area of application of these devices and increases operating
safety
Technical specifications
Cylindrical fuse holders
3NC10 3NC14 3NC22
Size mm × mm 10 × 38 14 × 51 22 × 58
Standards UL 4248-1; CSA C22.2; IEC 60269-2, IEC 60947-3
Approvals UL 4248-1; UL File Number E171267; CSA C22.2 No. 39-M, CCC
Rated voltage UnV AC 690; 600 acc. to UL/CSA
Rated current InA AC 32 50 100
30 acc. to UL/CSA 50 acc. to UL 80 acc. to UL/CSA
40 acc. to CSA
Rated conditional short-circuit current kA 50 50 (100 at 400 V) 50 (100 at 500 V)
Breaking capacity
Utilization category AC-22B (400 V) AC-22B (400 V) AC-20B (690 V)
Max. power dissipation of the fuse link
(conductor cross-section used)
W3 (6 mm2)
4.3 (10 mm2)
5 (10 mm2)
6.5 (25 mm2)
9.5 (35 mm2)
11 (50 mm2)
Rated impulse withstand voltage kV 6
Overvoltage category II
Pollution degree 2
No-voltage changing of fuse links Yes
Sealable when installed Yes
Mounting position Any
Current direction Any
Degree of protection acc. to IEC 60529 IP20
Terminals with touch protection acc. to BGV A3
incoming and outgoing feeder
Yes
Ambient temperature °C 45
Conductor cross-sections
Finely stranded, with end sleeve mm21.5 ... 16 1.5 ... 35 4 ... 50
AWG (American Wire Gauge) AWG 15 ... 5 14 ... 2 10 ... 1/0
Tightening torque Nm 2.5 2.5 ... 3 3.5 ... 4
Ib.in 22 22 ... 26 31 ... 35
© Siemens AG 2016
148 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
Load rating of SITOR cylindrical fuses
Cylinder Operational
class
(IEC 60269)
Rated
voltage Un
Rated
voltage Un
Rated
current In
Melting I2t
value I2ts
(tvs =1ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power dissi-
pation at In
Weight
approx.
V AC V DC A A2s A2s K W kg
3NC1003 aR 600 700 3 3 8 30 1.2 0.01
3NC1006 aR 600 700 6 4 20 30 1.5 0.01
3NC1008 aR 600 700 8 6 30 25 20.01
3NC1010 aR 600 700 10 960 40 2.5 0.01
3NC1012 aR 600 700 12 15 110 50 30.01
3NC1016 aR 600 700 16 25 150 60 3.5 0.01
3NC1020 aR 600 700 20 34 200 80 4.8 0.01
3NC1025 aR 600 700 25 60 250 90 60.01
3NC1032 aR 600 -- 32 95 500 110 7.5 0.01
3NC1401 aR 660 -- 1-- 1.2 90 50.02
3NC1402 aR 660 -- 2-- 10 30 30.02
3NC1403 aR 660 -- 3-- 15 40 2.5 0.02
3NC1404 aR 660 -- 4-- 25 50 30.02
3NC1405 aR 690 800 51.6 920 1.5 0.02
3NC1406 aR 690 800 61.4 15 47 1.5 0.02
3NC1410 aR 690 800 10 3.6 20 50 40.02
3NC1410-5 aR 690 600 10 3.6 90 50 40.02
3NC1415 aR 690 800 15 10 75 60 5.5 0.02
3NC1415-5 aR 690 600 15 9100 60 5.5 0.02
3NC1420 aR 690 800 20 26 120 70 60.02
3NC1420-5 aR 690 600 20 26 500 70 60.02
3NC1425 aR 690 800 25 44 250 80 70.02
3NC1425-5 aR 690 600 25 47 400 80 70.02
3NC1430 aR 690 800 30 58 300 80 90.02
3NC1430-5 aR 690 600 30 58 500 80 90.02
3NC1432 aR 690 800 32 95 700 80 7.6 0.02
3NC1432-5 aR 690 600 32 68 600 80 7.6 0.02
3NC1440 aR 690 800 40 110 900 100 80.02
3NC1440-5 aR 690 600 40 84 900 100 80.02
3NC1450 aR 690 800 50 220 1800 110 90.02
3NC1450-5 aR 690 600 50 200 2000 110 90.02
3NC2200 aR 600 500 100 1250 8000 110 16 0.06
3NC2200-5 aR 600 500 100 1100 8500 110 16 0.06
3NC2220 aR 690 500 20 34 220 41 4.6 0.06
3NC2220-5 aR 690 500 20 19 240 40 50.06
3NC2225 aR 690 500 25 50 300 50 5.6 0.06
3NC2225-5 aR 690 500 25 34 350 50 60.06
3NC2232 aR 690 500 32 80 450 65 70.06
3NC2232-5 aR 690 500 32 54 500 65 80.06
3NC2240 aR 690 500 40 100 700 80 8.5 0.06
3NC2240-5 aR 690 500 40 68 800 80 90.06
3NC2250 aR 690 500 50 185 1350 90 9.5 0.06
3NC2250-5 aR 690 500 50 135 1500 90 9.5 0.06
3NC2263 aR 690 500 63 310 2600 100 11 0.06
3NC2263-5 aR 690 500 63 280 3000 100 11 0.06
3NC2280 aR 690 500 80 620 5500 110 13.5 0.06
3NC2280-5 aR 690 500 80 600 6000 110 13.5 0.06
MLFB Operational
class
(IEC 60269)
Rated
voltage Un
Rated break-
ing capacity
I1n
Rated cur-
rent In
Melting I2t
value I2ts
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power dissi-
pation at In
Varying
load factor
VL
V AC / V DC
kA 1)
A A2s A2s
2)
K
2)
W
3NC1006-0MK gR 690/440 100/50 60.5 6.5 33 2.5 On request
3NC1010-0MK gR 690/440 100/50 10 1.3 18 37 3.3 On request
3NC1012-0MK gR 690/440 100/50 12 1.9 35 45 4On request
3NC1016-0MK gR 690/440 100/50 16 345 57 6On request
3NC1020-0MK gR 690/250 100/50 20 5.9 110 70 7.8 On request
3NC1025-0MK gR 690/250 100/50 25 12 140 76 8.7 On request
3NC1032-0MK gR 690/250 100/50 32 50 450 90 12 On request
3NC1406-0MK gR 690/700 100/50 60.5 3.5 31 3.1 On request
3NC1410-0MK gR 690/700 100/50 10 1.4 15 47 4.6 On request
3NC1416-0MK gR 690/600 100/50 16 3.2 32 56 6.7 On request
3NC1420-0MK gR 690/600 100/50 20 6.3 68 62 7.4 On request
3NC1425-0MK gR 690/600 100/50 25 13 108 71 8.4 On request
3NC1432-0MK gR 690/600 100/50 32 19 175 100 12.3 On request
3NC1440-0MK gR 690/440 100/50 40 43 470 87 11.7 On request
3NC1450-0MK gR 690/250 100/50 50 140 830 115 16.3 On request
3NC1463-0MK aR 690/250 100/50 63 330 2.100 110 16.7 On request
© Siemens AG 2016
149
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
3NC18100-0MK gR 690/440 100/50 10 0.9 17 33 4.6 0.06
3NC18160-0MK gR 690/440 100/50 16 352 31 5.2 0.06
3NC18200-0MK gR 690/440 100/50 20 5.3 90 35 6.8 0.06
3NC18250-0MK gR 690/440 100/50 25 8.3 160 43 8.7 0.06
3NC18320-0MK gR 690/440 100/50 32 21 400 49 9.8 0.06
3NC18400-0MK gR 690/440 100/50 40 33 600 52 11 0.06
3NC18500-0MK gR 690/440 100/50 50 65 1.250 53 13.8 0.06
3NC2200-0MK gR 690/700 100/50 25 13 180 38 8.1 On request
3NC2211-0MK gR 690/600 100/50 32 25 420 41 9On request
3NC2225-0MK gR 690/440 100/50 40 42 700 50 12.5 On request
3NC2232-0MK gR 690/250 100/50 50 74 1.250 63 15.2 On request
3NC2240-0MK gR 690/250 100/50 63 94 2400 64 17.5 On request
3NC2250-0MK gR 690/250 100/50 80 320 4400 72 23 On request
3NC2263-0MK gR 690/250 100/50 100 850 11500 79 28.1 On request
3NC2280-0MK aR 690/250 100/50 125 1500 29000 88 35.3 On request
3NC2301-0MK gS 1500/1000 30/50 10.1 2 9 2 On request
3NC2302-0MK gS 1500/1000 30/50 2 1 4.4 14 2.5 On request
3NC2304-0MK gS 1500/1000 30/50 4 7 55 21 5.3 On request
3NC2306-0MK gS 1500/1000 30/50 6 8 150 26 6.4 On request
3NC2310-0MK gS 1500/1000 30/50 10 90 540 17 3.1 On request
3NC2316-0MK gS 1500/1000 30/50 16 310 1120 14.7 On request
3NC2320-0MK gS 1500/1000 30/50 20 570 2850 25 5.4 On request
3NC2325-0MK gS 1500/1000 30/50 25 910 3300 33 6.9 On request
3NC2332-0MK gS 1500/1000 30/50 32 2650 9050 31 6.7 On request
3NC2340-0MK gR 1500/1000 30/50 40 3260 12800 38 9.4 On request
3NC2350-0MK gR 1500/1000 30/50 50 6480 26000 46 11.6 On request
3NC26250MK gR 690/440 100/50 25 8120 40 9.5 On request
3NC26320MK gR 690/440 100/50 32 14.5 190 54 12.3 On request
3NC26400MK gR 690/440 100/50 40 21 400 64 14.8 On request
3NC26500MK gR 690/440 100/50 50 48 950 66 17.5 On request
3NC26630MK gR 690/440 100/50 63 108 2,050 68 18.8 On request
3NC26800MK aR 690/440 100/50 80 205 3500 62 22.5 On request
3NC26000MK aR 690/440 100/50 100 340 5400 70 31.5 On request
3NC26110MK aR 690/440 100/50 125 645 11800 88 39 On request
MLFB Operational
class
(IEC 60269)
Rated
voltage Un
Rated break-
ing capacity
I1n
Rated cur-
rent In
Melting I2t
value I2ts
(tvs = 1 ms)
Breaking I2t
value
I2ta at Un
Temperature
rise at In
body center
Power dissi-
pation at In
Varying
load factor
VL
V AC / V DC
kA 1)
A A2s A2s
2)
K
2)
W
© Siemens AG 2016
150 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
Load rating of SITOR cylindrical fuses without strikers
in fuse holders - can be used as fuse switch disconnectors 1)
For SITOR fuse
links
Rated voltage Rated
current
Required conduc-
tor cross-section
Fuse holders – can be used as fuse switch disconnectors 1)
1-pole 2-pole 3-pole
InCu Type Imax Type Imax Typ e Imax
2) 2) 2)
V AC/V DC A mm2 A A A
Size10 × 38 mm
3NC1003 600/700 3 1 3NC1091 33NC1092/
2 × 3NC1091
33NC1093/
3 × 3NC1091
3
3NC1006 61 666
3NC1008 81 888
3NC1010 10 1.5 10 10 10
3NC1012 12 1.5 12 12 12
3NC1016 16 2.5 16 16 16
3NC1020 20 2.5 20 20 20
3NC1025 25 4 25 24 22
3NC1032 600/-- 32 6 32 30 28
For footnotes, see next page.
© Siemens AG 2016
151
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
Fuse tongs: 3NC1000.
1) Fuse holders acc. to IEC 60269-3, UL 512
Fuse switch disconnectors (10 × 38, 14 × 51 mm) acc. to IEC 60947-3
Fuse switch disconnectors (22 × 58 mm) acc. to IEC 60947-3
2) The Imax values apply to "stand-alone operation". If several devices are
butt-mounted and/or subject to unfavorable cooling conditions, these
values may be reduced still further. With a larger conductor cross-section,
values higher than Imax are possible.
Load rating of SITOR cylindrical fuses with strikers in
fuse holders – can be used as fuse switch disconnectors 1)
1) Fuse holders acc. to IEC 60269-3, UL 512
Fuse switch disconnectors (10 × 38, 14 × 51 mm) acc. to IEC 60947-3
Fuse switch disconnectors (22 × 58 mm) acc. to IEC 60947-3
2) The Imax values apply to "stand-alone operation". If several devices are
butt-mounted and/or subject to unfavorable cooling conditions, these
values may be reduced still further. With a larger conductor cross-section,
values higher than Imax are possible.
For SITOR fuse
links
Rated voltage Rated
current
Required
conductor
cross-section
Fuse holders – can be used as fuse switch disconnectors 1)
1-pole 2-pole 3-pole
InCu Type Imax Type Imax Typ e Imax
2) 2) 2)
V AC/V DC A mm2 A A A
Size 14 × 51 mm
3NC1401 660 1 1 3NC1491 13NC1492/
2 × 3NC1491
13NC1493/
3 × 3NC1491
1
3NC1402 21 2 2 2
3NC1403 31 3 3 3
3NC1404 41 4 4 4
3NC1405 690/800 5 1 5 5 5
3NC1406 61 6 6 6
3NC1410 10 1.5 10 10 10
3NC1415 15 1.5 15 15 15
3NC1420 20 2.5 20 20 20
3NC1425 25 4 25 24 22
3NC1430 30 6 28 27 25
3NC1432 32 6 32 32 32
3NC1440 40 10 40 39 38
3NC1450 50 10 48 46 44
Size 22 × 58 mm
3NC2220 690/500 20 2.5 3NC2291 20 3NC2292/
2 × 3NC2291
20 3NC2293/
3 × 3NC2291
20
3NC2225 25 4 25 25 25
3NC2232 32 6 32 32 32
3NC2240 40 10 40 39 38
3NC2250 50 10 50 48 44
3NC2263 63 16 60 58 56
3NC2280 80 25 74 71 69
3NC2200 600/500 100 35 95 90 85
For SITOR fuse
links
Rated voltage Rated current Required
conductor
cross-section
Fuse holders – can be used as fuse switch disconnectors 1)
1-pole 2-pole 3-pole
InCu Type Imax2) Type Imax2) Type Imax2)
V AC A mm2 A A A
Size 14 × 51 mm
3NC1410-5 690/600 10 1.5 3NC1491 10 3NC1492/
2 × 3NC1491-5
10 3NC1493/
3 × 3NC1491-5
10
3NC1415-5 15 1.5 15 15 15
3NC1420-5 20 2.5 20 20 20
3NC1425-5 25 4 25 25 25
3NC1430-5 30 6 30 30 30
3NC1432-5 32 6 32 32 31
3NC1440-5 40 10 38 35 34
3NC1450-5 50 10 48 46 44
Size 22 × 58 mm
3NC2220-5 690/500 20 2.5 3NC2291 20 3NC2292/
2 × 3NC2291-5
20 3NC2293/
3 × 3NC2291-5
20
3NC2225-5 25 4 25 25 25
3NC2232-5 32 6 32 31 30
3NC2240-5 40 10 40 39 37
3NC2250-5 50 10 45 43 42
3NC2263-5 63 16 59 55 52
3NC2280-5 80 25 71 69 68
3NC2200-5 600/500 100 35 94 90 85
© Siemens AG 2016
152 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
Dimensional drawings
Cylindrical fuse links
Cylindrical fuse holders
3NC10. ., 3NC10..-0MK 3NC14. ., 3NC14..-0MK 3NC22. ., 3NC22..-0MK
3NC23..-0MK
9,5
10,2
Ø
38
10
14,3
51
16
Ø
22,2
58
127 2
Ø 22.2 0.1
I201_19442
3NC109.
3NC149.
3NC129.
I201_11382
45
35,4 85
53,117,7
81
3758
64,5
54 81
27
I201_11383
75,5
45
95,5
42,5 69
36
I201_11384
72 108
76
45
117,5
43 70
© Siemens AG 2016
153
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
Cylindrical fuse holders with signaling switch
Cylindrical fuse bases
3NC1491-5 3NC1291-5
43
49 69
45
28
24
27
92
96
122
I201_12844
43
70
45
28
24
36
112
118
143
I201_12845
3NC1038-1 to 3NC1038-3 3NC1451-1
3NC2258-1
60,5
20 2020
41
21,5
76
26
I201_11385a
I201_11386a
50,5
103,5
50
90
88
24
33
I201_11387
66,2
110,8
126,5
66,5
© Siemens AG 2016
154 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
3NC239.-0MK
3NC18..-0MK, 3NC26..-0MK
186
96
102
76 5
200
50
A
2x Ø6,5
Type Dimensions
I201_19435
A
40
80
120
3NC2391-0MK
3NC2392-0MK
3NC2393-0MK
C
F
H
K
J
AR
L
N
e
E
DM
J
Type Dimensions
I201_19439
Ø C
18
26
A
19
29
D
52,2
53,5
E
71,5
75,8
F
9
13
H
12
19
K
9
14
L
88
103
M
12
13
N
7
9,3
R
14
19,7
e
1,4
2
3NC18..-0MK
3NC26..-0MK
© Siemens AG 2016
155
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
3NH5023 3NH5723
80
25
36 C
A
D
B
Ø14
117,5
Ø7,5
Type Dimensions
I201_19431
A
59
64
B
M8
M10
C
35,5
38
D
11
11
3NH5023
3NH5323
98
Ø10 Ø5
20
75
M5
3128
48
10
I201_19434
© Siemens AG 2016
156 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
Characteristic curves
3NC10 series
Size: 10 × 38 mm
Operational class: aR
Rated voltage: 600 V AC/700 V DC, 3 ... 25 A
600 V AC, 32 A
Rated current: 3 ... 32 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
I201_11453
10 -3
10 -2
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
6
10 4
2
4
[s]
t
VS
246
p
10 3
246
10 2
246
10 1
10 0
3 A
6 A
8 A
10 A
12 A
16 A
20 A
25 A
32 A
Virtual pre-arcing time
Prospective short-circuit current
10 1
10 1
10 2
10 3
10 210 410 5
2
4
6
10 3
2
4
6
10 4
2
4
6
246 246 246 246
p
I201_11454
C
32 A
25 A
20 A
16 A
12 A
10 A
8 A
6 A
3 A
Prospective short-circuit current
Peak let-through current
0
0100 200 300 400 500 600 700 800
1
I201_11455
0,2
0,4
0,6
0,8
Recovery voltage
Correction factor
I201_11456
400
800
1200
1600
8002000
0400 600
Peak arc voltage
Recovery voltage
© Siemens AG 2016
157
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
3NC10..-0MK series
Size: 10 × 38 mm
Operational class: gR
Rated voltage: 690 V AC; 250 ... 400 V DC
Rated current: 6 ... 32 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
1
100246810
2246810
3
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
32 A
25 A
20 A
16 A
12 A
10 A
6 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19384
p
10 2
10 110 3
10 210 410 5
246 246 246 246
C
10 3
2
4
6
10 1
2
4
6
10 4
2
4
6
10 5
2
4
6
32 A
25 A
20 A
16 A
12 A
10 A
6 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19387
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19390
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19391
© Siemens AG 2016
158 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
3NC14 series
Size: 14 × 51 mm
Operational class: aR
Rated voltage: 660 V AC (1 ... 4 A);
690 V AC/800 V DC (5 ... 50 A)
Rated current: 1 ... 10 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
10 -3
10 -2
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
6
10 4
2
4
[s]
t
VS
246
p
10 3
246
10 2
246
10 1
10 0
I201_11459
1 A
2 A
3 A
4 A
5 A
6 A
10 A
Virtual pre-arcing time
Prospective short-circuit current
10 1
10 1
10 2
10 3
10 210 410 5
2
4
6
10 3
2
4
6
10 4
2
4
6
246 246 246 246
I201_11460
10 A
5 A
Peak let-through current
Prospective short-circuit current
0
0
100 200 300 400 500 600 700 800
1
I201_11461
0,2
0,4
0,6
0,8 660 V
690 V
Recovery voltage
Correction factor
I201_11462
400
800
1200
1600
8002000
0
400 600
Peak arc voltage
Recovery voltage
© Siemens AG 2016
159
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
3NC14 series
Size: 14 × 51 mm
Operational class: aR
Rated voltage: 660 V AC (1 ... 4 A);
690 V AC/800 V DC (5 ... 50 A)
Rated current: 15 ... 50 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
10 -3
10 -2
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
6
10 4
2
4
[s]
t
VS
246
p
10 3
246
10 2
246
10 1
10 0
I201_11463
15 A
20 A
25 A
30 A
32 A
40 A
50 A
Virtual pre-arcing time
Prospective short-circuit current
10 1
10 1
10 2
10 3
10 210 410 5
2
4
6
10 3
2
4
6
10 4
2
4
6
246 246 246 246
p
I201_11464
C
50 A
40 A
32 A
30 A
25 A
20 A
15 A
Prospective short-circuit current
Peak let-through current
0100 200 300 400 500 600
U
1
700 800
A
w
I201_11465
0,2
0,4
0,6 30 A
32 A
0,8
k
Recovery voltage
Correction factor
I201_11462
400
800
1200
1600
8002000
0
400 600
Peak arc voltage
Recovery voltage
© Siemens AG 2016
160 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
3NC14..-0MK series
Size: 14 × 51 mm
Operational class: gR, aR
Rated voltage: 690 V AC; 250 ... 700 V DC
Rated current: 6 ... 63 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
1246810
2246810
3
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
63 A
50 A
40 A
32 A
25 A
20 A
16 A
10 A
6 A
104
100
Prospective short-circuit current
Virtual pre-arcing time
I201_19385
p
10 2
10 110 3
10 210 410 5
246 246 246 246
C
10 3
2
4
6
10 1
2
4
6
10 4
2
4
6
10 5
2
4
6
63 A
50 A
40 A
32 A
25 A
20 A
16 A
10 A
6 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19388
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19390
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19391
© Siemens AG 2016
161
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
3NC14..-5 series with striking pin
Size: 14 × 51 mm
Operational class: aR
Rated voltage: 690 V AC/600 V DC
Rated current: 10 ... 50 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
10 -3
10 -2
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
6
10 4
2
4
[s]
tVS
246
p
10 3
246
10 2
246
10 1
10 0
I201_13410
10 A
15 A
20 A
25 A
30 A
32 A
40 A
50 A
Prospective short-circuit current
Virtual pre-arcing time
10 1
10 1
10 2
10 3
10 210 410 5
2
4
6
10 3
2
4
6
10 4
2
4
6
246 246 246 246
p
I201_13411
C
50 A
40 A
32 A
30 A
25 A
20 A
15 A
10 A
Let-through current
Prospective short-circuit current
0
0
100 200 300 400 500 600 700 800
1
I201_13412
0,2
0,4
0,6
0,8
Correction factor
Recovery voltage
I201_13413
400
600
200
800
1200
1000
1400
8002000
0
400 600
Peak arc voltage
Recovery voltage
© Siemens AG 2016
162 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
3NC18..-0MK series
Size: 18 × 88 mm
Operational class: gR
Rated voltage: 690 V AC/440 V DC
Rated current: 10 ... 50 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
1246810
2246810
3
[A]
p
2
4
6
2
4
6
2
4
6
10-3
10-4
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
50 A
40 A
32 A
25 A
20 A
16 A
10 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19395
p
10 2
10 110 3
10 210 410 5
246 246 246 246
C
10 3
2
4
6
10 1
2
4
6
10 4
2
4
6
10 5
2
4
6
50 A
40 A
32 A
25 A
20 A
16 A
10 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19396
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19399
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19400
© Siemens AG 2016
163
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
3NC22 series
Size: 22 × 58 mm
Operational class: aR
Rated voltage: 690 V AC/500 V DC (20 ... 80 A);
600 V AC/500 V DC (100 A)
Rated current: 20 ... 100 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
10 -3
10 -2
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
6
10 4
2
4
[s]
tVS
246
p
10 4
246
10 3
246
10 2
10 1
I201_11470
20 A
25 A
32 A
40 A
50 A
63 A
80 A
100 A
Virtual pre-arcing time
Prospective short-circuit current
10 1
10 1
10 2
10 3
10 210 410 5
2
4
6
10 3
2
4
6
10 4
2
4
6
246 246 246 246
p
I201_11471
C
100 A
80 A
63 A
50 A
40 A
32 A
25 A
20 A
Peak let-through current
Prospective short-circuit current
0
0
100 200 300 400 500 600 700 800
1
I201_11472
600 V
0,2
0,4
0,6
0,8
690 V
Recovery voltage
Correction factor
I201_11466
400
600
200
800
1200
1000
1400
8002000
0
400 600
Peak arc voltage
Recovery voltage
© Siemens AG 2016
164 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
3NC22..-0MK series
Size: 22 × 58 mm
Operational class: gR, aR
Rated voltage: 690 V AC; 250 ... 700 V DC
Rated current: 25 ... 125 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
2
101246810
3246810
4
[A]
p
2
4
6
2
4
6
2
4
6
10-3
10-4
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
125 A
100 A
80 A
63 A
50 A
40 A
32 A
25 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19386
p
10
2
10
1
10
3
10
2
10
4
10
5
246 246 246 246
C
10
3
2
4
6
10
1
2
4
6
10
4
2
4
6
10
5
2
4
6
125 A
100 A
80 A
63 A
50 A
40 A
32 A
25 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19389
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19390
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19391
© Siemens AG 2016
165
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
3NC22..-5 series with striking pin
Size: 22 × 58 mm
Operational class: aR
Rated voltage: 690 V AC/500 V DC (20 ... 80 A);
600 V AC/500 V DC (100 A)
Rated current: 20 ... 100 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
10 -3
10 -2
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
6
10 4
2
4
[s]
tVS
246
p
10 4
246
10 3
246
10 2
10 1
I201_13414
20 A
25 A
32 A
40 A
50 A
63 A
80 A
100 A
Prospective short-circuit current
Virtual pre-arcing time
10 1
10 1
10 2
10 3
10 210 410 5
2
4
6
10 3
2
4
6
10 4
2
4
6
246 246 246 246
p
I201_13415
C
100 A
80 A
63 A
50 A
40 A
32 A
25 A
20 A
Let-through current
Prospective short-circuit current
0,2
0,4
0,6
0,8
0
0
100 200 300 400 500 600 700 800
1
I201_13416
690 V
600 V
Recovery voltage
Correction factor
I201_13417
400
600
200
800
1200
1000
1400
8002000
0
400 600
Peak arc voltage
Recovery voltage
© Siemens AG 2016
166 Siemens · 10/2015
Cylindrical fuse design
Fuse Systems
SITOR Semiconductor Fuses
3NC23..-0MK series
Size: 22×127mm
Operational class: gS, gR, aR
Rated voltage: 1500 V AC/1000 V DC
Rated current: 1 ... 50 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
I2t characteristic
246810
1
100246810
2246810
3
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
50 A
40 A
32 A
25 A
20 A
16 A
10 A
6 A
4 A
2 A
1 A
104
Prospective short-circuit current
Virtual pre-arcing time
I201_19392
Un = DC 1000 V
p
10 2
10 110 3
10 210 410 5
246 246 246 246
C
10 3
2
4
6
10 1
2
4
6
10 4
2
4
6
10 5
2
4
6
50 A
40 A
32 A
25 A
20 A
16 A
10 A
6 A
4 A
2 A
1 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19393
p
10 2
10 110 3
10 210 410 5
246 246 246 246
10 3
2
4
6
10 1
2
4
6
10 0
2
4
6
10 4
2
4
6
10 5
2
2
4
6
5
50 A
40 A
32 A
25 A
20 A
16 A
10 A
6 A
4 A
2 A
1 A
Prospective short-circuit current
Unlimited peak values:
DC component 80 %
DC component 0 %
I201_19394
I 2 t [ A 2s]
© Siemens AG 2016
167
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Cylindrical fuse design
3NC26..-0MK series
Size: 26×103mm
Operational class: gR, aR
Rated voltage: 690 V AC/440 V DC
Rated current: 25 ... 125 A
Time/current characteristics diagram Let-through characteristics (current limitation at 50 Hz)
Correction factor kA for breaking I2t value Peak arc voltage
246810
2246810
3246810
4
[A]
p
2
4
6
2
4
6
10-3
10-2
10-1
2
4
6
2
4
6
100
101
2
4
6
102
2
4
6
2
4
6
103
[s]
vs
125 A
100 A
80 A
63 A
50 A
40 A
32 A
25 A
104
101
Prospective short-circuit current
Virtual pre-arcing time
I201_19397
p
10 2
10 110 3
10 210 410 5
246 246 246 246
C
10 3
2
4
6
10 1
2
4
6
10 4
2
4
6
10 5
2
4
6
125 A
100 A
80 A
63 A
50 A
40 A
32 A
25 A
Peak let-through current
Prospective short-circuit current
Unlimited peak values:
DC component 50 %
DC component 0 %
I201_19398
1
0100 200 300 400 500 600 700 800
w[V]
U
A
Correction factor
Recovery voltage
0.2
0.4
0.6
0.8
1.2
I201_19399
400
800
1200
1600
2000
8002000
0
400 600
Peak arc voltage
Recovery voltage
I201_19400
© Siemens AG 2016
168 Siemens · 10/2015
NEOZED and DIAZED design
Fuse Systems
SITOR Semiconductor Fuses
Overview
SILIZED is the brand name for the NEOZED fuses (D0 fuses) and
the DIAZED fuses (D fuses) with quick-acting characteristic for
semiconductor protection.
The fuses are used in combination with fuse bases, fuse screw
caps and accessory parts of the standard fuse system.
SILIZED semiconductor fuses protect power semiconductors
from the effects of short circuits because the super quick discon-
nect characteristic is far quicker than that of conventional fuses.
They protect expensive devices and system components, such
as semiconductor contactors, static relays, converters with
fuses in the input and in the DC link, UPS systems and soft
starters for motors up to 100 A.
When using fuse bases and fuse screw caps made of molded
plastic, always heed the maximum permissible power loss
values due to the high power loss (power dissipation) of the
SILIZED fuses.
When using these components, the following maximum
permissible power loss applies:
NEOZED D02: 5.5 W
DIAZED DII: 4.5 W
DIAZED DIII: 7.0 W
This enables a partial thermal permanent load of only 50 %.
The DIAZED screw adapter DII for 25 A is used for the 30 A
fuse link.
Benefits
SILIZED semiconductor fuses have an extremely compact de-
sign. This means they have a very small footprint – particularly
the NEOZED version
The rugged and well-known DIAZED design complies with
IEC 60269-3. It is globally renowned and can be used in many
countries
A wide range of fuse bases and accessories is available for
the NEOZED and DIAZED versions of the SILIZED semicon-
ductor fuses. This increases the application options in many
devices
Technical specifications
Fuse links, NEOZED design
5SE13
Fuse links, DIAZED design
5SD4
Standards DIN VDE 0636-3; IEC 60269-3;
EN 60269-4 (VDE 0636-4); IEC 60269-4
Operational class gR
Characteristic Quick-acting
Rated voltage UnVAC 400 500
VDC 250 500
Rated current InA10 ... 63 16 ... 100
Rated breaking capacity kA AC 50
kA DC 8
Mounting position Any, preferably vertical
Non-interchangeability Using adapter sleeves Using screw adapter or adapter sleeves
Resistance to climate °C Up to 45 at 95 % rel. humidity
Ambient temperature °C -5 to +40, humidity 90 % at 20
© Siemens AG 2016
169
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
NEOZED and DIAZED design
Dimensional drawings
Technical specifications
5SE1 Size D01 D02
Rated current in A 10 ... 16 20 ... 63
Dimension d 11 15.3
Dimension h 36 36
5SD420, 5SD430, 5SD440, 5SD480 Size/thread DII/E27
Rated current in A 16 20 25 30
Dimension d 10 12 14 14
5SD450, 5SD460, 5SD470 Size/thread DIII/E33
Rated current in A 35 50 63
Dimension d 16 18 20
5SD510, 5SD520 Size/thread DIV/R1¼”
Rated current in A 80 100
Dimension d 5 7
h
I2_06252d
Ød
I201 06247
d
49
22,5
49
I201 06248
d
28
34,5
57
d
I201_06682
Type Size NEOZED design
InPv I2tsI2ta
1ms 4ms 230 V AC 400 V AC
A W K A2s A2s A2s A2s
5SE1310 D01 10 6.9 64 30 30 56 73
5SE1316 16 6.2 61 31 34 92 120
5SE1320 D02 20 8.1 64 50 56 146 190
5SE1325 25 8.2 63 120 120 166 215
5SE1335 35 16.7 100 145 182 361 470
5SE1350 50 12.0 80 460 540 1510 1960
5SE1363 63 15.5 96 845 932 3250 4230
Type Size DIAZED design
InPv I2tsI2ta
1ms 500 V AC
A W K A2s A2s
5SD420 DII 16 12.1 63 16.2 60
5SD430 20 12.3 69 35.8 139
5SD440 25 12.5 61 48.9 205
5SD480 30 13.4 65 85 310
5SD450 DIII 35 14.8 62 135 539
5SD460 50 18.5 66 340 1250
5SD470 63 28 84 530 1890
5SD510 DIV 80 34.3 77 980 4200
5SD520 100 41.5 83 1950 8450
© Siemens AG 2016
170 Siemens · 10/2015
NEOZED and DIAZED design
Fuse Systems
SITOR Semiconductor Fuses
Characteristic curves
5SE13.. series
Size: D01, D02
Operational class: gR
Rated voltage: 400 V AC/250 V DC
Rated current: 10 ... 63 A
Time/current characteristics diagram Melting I2t values diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
210 1
10 -3
2
4
6
10 -2
6410
2
826410 3
8
2
4
6
10 -1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
10 4
vs
p[A]
[s]
10 A 16 A
20 A
25 A
32/35 A
50 A
63 A
I201_11473a
2 6 1 01 0 4
1264 1 0 2
8 2 64 1 0 3
84
8 2 6 1 04 5
8
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
2
4
6
1 0
I 2 _ 1 1 4 7 5
0
1
2
3
4
5
6
6 3 A
5 0 A
e f f
[ A ]
2s
[ A s ]
2
1 0 A
1 6 A
2 0 A
2 5 A
3 5 A
1 0 - 1 s
1 0 - 2 s
1 0 - 3 s
1 0 - 4 s
1 0 0s
1 0 2
c
e f f
[ A ]
[ A ]
1 0
I 2 _ 1 1 4 7 4
2
4 6 8 2 1 0 3
46821 0 4
4682 1 0 5
4 6 8
2
4
6
1 0 3
2
4
6
1 0 4
5 0 A
6 3 A
3 5 A
3 2 A
2 0 A
1 6 A
1 0 A
12
© Siemens AG 2016
171
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
NEOZED and DIAZED design
5SD4, 5SD5 series
Size: DII, DIII, DIV
Operational class: gR
Characteristic: Super quick
Rated voltage: 500 V AC/500 V DC
Rated current: 16 ... 100 A
Time/current characteristics diagram Melting I2t values diagram
Current limiting diagram
$Peak short-circuit current with largest DC component
%Peak short-circuit current without DC component
2101
10-3
2
4
6
10-2
6410
2
82 64103
8
2
4
6
10-1
2
4
6
100
2
4
6
101
2
4
6
102
2
4
6
103
2
4
6
104
I2_06426c
vs
p[A]
[s]
50 A
30 A
20 A
35 A
25 A
16 A 63 A
80 A
100 A
ef
261010 4
026410
1
82 6410
2
83
8
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
2
4
6
10
I2_07070b
0
2
3
4
5
6
[A]
2s[A s]
2
261044
8
1
10-1
s10-2s10-3
s
100s
16 A
20 A
25 A
30 A
50 A
63 A
35 A
100 A
80 A
10-4
s
10226410
3
8
2
4
I2_06054b
c
[A]
[A]
10 26410
4
826410
5
824
16 A
20 A
2
10
3
6
2
4
10
4
612
25 A
30 A
35 A
50 A
63 A
80 A
100 A
ef
© Siemens AG 2016
172 Siemens · 10/2015
Configuration
Fuse Systems
SITOR Semiconductor Fuses
Overview
Parameters
The fuse links are selected according to rated voltage, rated
current, breaking I2t value I2ta and varying load factor, taking
into consideration other specified conditions. All of the follow-
ing data refers, unless otherwise specified, to use of alternating
current from 45 Hz to 62 Hz.
Rated voltage Un
The rated voltage of a SITOR fuse link is the voltage specified as
the rms value of the AC voltage on the fuse link and in the order-
ing and configuration data and the characteristics.
Always ensure that the rated voltage of the fuse link you select is
such that the fuse link will reliably quench the voltage driving the
short-circuit current. The driving voltage must not exceed the
value Un+ 10 %. Please note that the supply voltage Uv0 of a
power converter can also be increased by 10 %. If, in the
shorted circuit, two branches of a converter circuit are con-
nected in series, and if the short-circuit current is sufficiently
high, it can be assumed that voltage sharing is uniform. It is
essential to observe the instructions in "Series connection of fuse
links" on page 179.
Rectifier operation
The supply voltage Uv0 is the driving voltage with converter
equipment that can only be used for rectifier operation.
Inverter operation
With converter equipment that can also be used for inverter op-
eration, inverter shoot-through may occur as faults. In this case,
the driving voltage UWK in the shorted circuit is the sum of the
infeed direct voltage (e.g. the e.m.f. of the DC generator) and the
AC-line supply voltage. When rating a fuse link, this sum can be
replaced by an AC voltage whose rms value is 1.8 times that of
the AC-line supply voltage (UWK = 1.8 Uv0). The fuse links must
be rated so that they reliably quench the voltage UWK.
VSI voltage
VSI is the abbreviation for Voltage Sourced Inverter. The VSI volt-
age UVSI is a DC test voltage defined in IEC 60269-4 specially
for use in applications with energy stores. The characteristic fea-
ture of such applications is the extremely steep rise in current
in the event of a fault. The VSI voltage and the corresponding
I2t value for SITOR fuses 3NB1 and 3NB2 is specified in the
"Technical Specifications" table; the values for all other SITOR
fuses are available on request.
Rated current In, load rating
The rated current of a SITOR fuse link is the current specified in
the "Selection and ordering data", in the "Characteristic curves"
and on the fuse link as the rms value of an alternating current for
the 45 Hz to 62 Hz frequency range.
When operating fuse links with rated current, the following are
considered normal operating conditions:
Natural air cooling with an ambient temperature of +45 °C
Conductor cross-sections equal test cross-sections (see table
"Test cross-sections"), for operation in LV HRC fuse bases and
switch disconnectors, see "Selection and ordering data" " in
Catalog LV 10.
Conduction angle of a half-period 120°el
Continuous load maximum with rated current
For operating conditions that deviate from the above, the per-
missible load current In’ of the SITOR fuse link can be deter-
mined using the following formula:
In’ = ku × kq × k × kl × VL × In
with
InRated current of the fuse link1)
kuCorrection factor for ambient temperature (page 173)
kqCorrection factor for conductor cross-section (page 173)
kCorrection factor for conduction angle (page 173)
klCorrection factor for forced-air cooling (page 173)
VL Varying load factor (page 174).
Test cross-sections
1) When using SITOR fuse links in LV HRC fuse bases according to
IEC/EN 60269-2-1 and in fuse switch disconnectors and switch
disconnectors with fuses, please also refer to the information
in the "Selection and ordering data" in Catalog LV 10.
Rated current Test cross-sections
In(3NC10, 3NC11, 3NC14,
3NC15, 3NC22, 3NE1...,
3NE80.., 3NE4 series) 1)
(all other series)
ACu mm2Cu mm2
10 1.0 --
16 1.5 --
20 2.5 45
25 445
35 645
40 10 45
50 10 45
63 16 45
80 25 45
100 35 60
125 50 80
160 70 100
200 95 125
224 -- 150
250 120 185
315 2 × 70 240
350 2 × 95 260
400 2 × 95 320
450 2 × 120 320
500 2 × 120 400
560 2 × 150 400
630 2 × 185 480
710 2 × (40 × 5) 560
800 2 × (50 × 5) 560
900 2 × (80 × 4) 720
1000 -- 720
1100 -- 880
1250 -- 960
1400 -- 1080
1600 -- 1200
© Siemens AG 2016
173
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Correction factor for ambient temperature ku
The influence of the ambient temperature on the permissible
load of the SITOR fuse link is taken into account using the
correction factor ku as shown in the following diagram.
Correction factor for conductor cross-section kq
The rated current of the SITOR fuse links applies to operation
with conductor cross-sections that correspond to the respective
test cross-section (see the table on page 172).
In the case of reduced conductor cross-sections, the correction
factor kq must be used, as shown in the following diagram:
a = Reduction of cross-section of one connection
b = Reduction of cross-section of both connections
Correction factor for conduction angle k
The rated current of the SITOR fuse links is based on a sinusoi-
dal alternating current (45 Hz to 62 Hz). However, in converter
operation, the branch fuses are loaded with an intermittent cur-
rent, whereby the conduction angle is generally 180°el or 120°el.
With this load current wave form, the fuse link can still carry the
full rated current. In the case of smaller conduction angles,
the current must be reduced in accordance with the following
diagram.
Correction factor for forced-air cooling kl
In the case of increased air cooling, the current carrying
capacity of the fuse links increase with the air speed,
air speeds > 5 m/s do not produce any significant further
increase in current carrying capacity.
-20 0+20
+40 +60 +80
°C
0,8
0,9
1,0
1,1
1,2
ku
I201_12636
-40
Ambient temperature
Correction factor
100 80 60 40 30 20 15
%
0,65
0,70
0,75
0,80
0,85
k
10
0,95
1,00
50
0,90
q
a
b
I201_12639
Connection cross-section
(as a % of the test cross-section)
Correction factor
30 45 60 90 120 180 240
°el
0,5
0,6
0,7
0,8
0,9
k
360
1,0
1,1
I201_12637
Valve conducting period
Correction factor
024
m/s
1,0
1,1
1,2
1,3
1,4
kl
6
I201_12638
Air velocity
Correction factor
© Siemens AG 2016
174 Siemens · 10/2015
Configuration
Fuse Systems
SITOR Semiconductor Fuses
Varying load factor VL
The varying load factor VL is a reduction factor by which the
non-aging current carrying capacity of the fuse links can be
determined for any load cycles. Due to their design, the
SITOR fuse links have different varying load factors. In the
characteristic curves of the fuse links, the respective varying
load factor VL for >10000 load changes (1 hour "ON", 1 hour
"OFF") is specified for the expected operating time of the fuse
links. In the event of a smaller number of load changes during
the expected operating time, it may be possible to use a fuse link
with a smaller varying load factor VL as shown in the following
diagram.
In the case of uniform loads (no load cycles and no shutdowns),
the varying load factor can be taken as VL = 1. For load cycles
and shutdowns that last longer than 5 min. and are more fre-
quent than once a week, you need to select the varying load
factor VL specified in the characteristic curves of the individual
fuse links.
Waveform of the varying load factor VL for load cycles
Fuse currents for operation in power converter
The rms value of the fuse current can be calculated for the
most common converter circuits from the (smoothed) direct
current Id or the conductor current IL according to the following
table:
10125
10225
10325
10425
105
/
LA n
I201_12640
1,0
0,95
0,9
0,85
0,8
0,6
0,7
0,8
1,1
0,9
1,0
Permissible number of load cycles
VL:
Converter circuit Rms value of the conductor current
(phase fuse)
Rms value of the branch current
(branch fuse)
Single-pulse center tap connection (M1) 1.57 Id--
Double-pulse center tap connection (M2) 0.71 Id--
Three-pulse center tap connection (M3) 0.58 Id--
Six-pulse center tap connection (M6) 0.41 Id--
Double three-pulse center tap connection (parallel) (M3.2) 0.29 Id--
Two-pulse bridge circuit (B2) 1.0 Id0.71 Id
Six-pulse bridge circuit (B6) 0.82 Id0.58 Id
Single-phase bidirectional circuit (W1) 1.0 IL0.71 IL
© Siemens AG 2016
175
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Configuration
I2t values
In the event of a short circuit, the current of the fuse link
increases during the melting time ts up to let-through
current Ic (melting current peak).
During the arc quenching time tL, the electric arc develops and
the short-circuit current is quenched (see the diagram below).
Current path when switching fuse links
The integral of the current squared over the total
operating time (ts+tL), known as the breaking I2t value,
determines the heat to be fed to the semiconductor device
that is to be protected during the breaking operation.
To ensure adequate protection, the breaking I2t value of the
fuse link must be smaller than the I2t value of the semiconductor
device. As the temperature increases, i.e. preloading increases,
the breaking I2t value of the fuse link decreases almost in the
same way as the I 2t value of a semiconductor device, so
that it is sufficient to compare the I2t values in a non-loaded
(cold) state.
The breaking I2t value (I2ta) is the sum of the melting I2t value
(I2ts) and the quenching I2t value (I2tL).
(semiconductor, tvj = 25 °C,
tp = 10 ms) > (fuse link)
Melting I 2t value I 2ts
The melting I 2t value can be calculated from the value pairs
of the time/current characteristic curve of the fuse link for any
periods.
As the melting time decreases, the melting I 2t value tends to-
wards a lower limit value at which almost no heat is dissipated
from the bottleneck of the fuse element to the environment dur-
ing the melting process. The melting I 2t values specified in the
selection and ordering data and in the characteristic curves cor-
respond to the melting time tvs =1ms.
Quenching I2t value I2tL
Whereas the melting I2t value is a characteristic of the fuse link,
the quenching I2t value depends on circuit data, such as:
The recovery voltage Uw
The power factor p.f. of the shorted circuit
The prospective current Ip (current at the installation position
of the fuse link if this is jumpered)
The maximum quenching I 2t value is reached at a current
of 10 x In to 30 x In depending on the fuse type.
Breaking I2t value I2ta, correction factor kA
The breaking I2t values of the fuse links are specified in the
characteristic curves for the rated voltage Un. To determine t
he breaking I2t value for recovery voltage Uw the correction
factor kA must be taken into account.
I2ta (at Uw) = I2ta (at Un) × kA
The "correction factor kA" characteristic (see the following
diagram) is specified in the characteristic curves for the individ-
ual fuse series. The breaking I2t values determined in this way
apply to prospective currents Ip10 × In and p.f. = 0.35.
Correction factor kA for breaking I2t value
Example: Series 3NE8 0..
c
s
A
L
I201_12641
t
t
t
t
I2td

I2td

I2tA

100 200 300 400 500 600
V
1
0,2
0,4
0,6
0,8
700
w
U
A
I201_12642
k
Recovery voltage
Correction factor
© Siemens AG 2016
176 Siemens · 10/2015
Configuration
Fuse Systems
SITOR Semiconductor Fuses
Taking into account the recovery voltage Uw
The recovery voltage Uw is derived from the voltage driving
the short-circuit current. For most faults, the driving voltage is
equal to the supply voltage Uv0; however, for shoot-throughs
it is 1.8 times the value for the supply voltage Uv0 (see rated
voltage, page 172). If the shorted circuit contains two branches
of a converter circuit and thus two fuse links in series, and if the
short-circuit current is sufficiently high (see series connection,
page 179) it can be assumed that there is a uniform voltage
sharing, i.e. Uw = 0.5 × Uv0 or in the case of shoot-throughs
Uw = 0.9 × Uv0.
Influence of the power factor p.f.
The specifications in the characteristic curves for the breaking
I2t values (I2ta) refer to a power factor of p.f. = 0.35 (exception:
for 3NC58.., 3NE64.., 3NE94.. SITOR fuse links, the following
applies: p.f. = 0.2).
The dependence of the breaking I2t values on the power factor
p.f. at 1.0 × Un and at 0.5 × Un is shown in the following diagram.
Breaking I 2t value I 2ta of SITOR fuse links dependent on the power
factor p.f.
at 1.0 Un
at 0.5 Un
a = for 3NC58.., 3NE64.., 3NE94.. SITOR fuse links
(reference to p.f. = 0.2)
b = for all other SITOR fuse links (reference to p.f. = 0.35)
60
100
120
80 a
b
I201_12643
%
0,2 0,4 0,6 0,8
0
Power factor p. f.
Cleaning- value
at p. f. (as a % of
at p. f. = 0.35 or 0.2)
2A
2
2A
© Siemens AG 2016
177
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Time/current characteristics
The solid time/current characteristic curves in the following
diagram specify the time to melting for the non-loaded fuse
link in a cold state (max. +45 °C).
35 A: Operational class gR
160 A: Operational class aR
If the time/current characteristic curve in the long-time range
(tvs > 30 s) is dashed (fuse links of operational class aR), this
specifies the limit of the permissible overload in a cold state.
If the dotted part of the characteristic curve is exceeded, there
is a risk of damage to the ceramic body of the fuse link. The fuse
link can only be used for short-circuit protection. In this case, an
additional protective device (overload relay, circuit breaker) is
required to protect against overload. In the case of controlled
converter equipment, the current limiter is sufficient.
If the time/current characteristic curve is shown as a solid line
over the entire time range (fuse links of operational class gR or
gS), the fuse link can operate in the entire time range.
This means it can be used both for overload and short-circuit
protection.
Real melting time
The virtual melting time tvs is specified in the time/current char-
acteristic curve, depending on the prospective current. It is a
value that applies to the current squared (di/dt)=).
In the case of melting times tvs < 20 ms the virtual melting time
tvs deviates from the real melting time ts. The real melting time
may be several milliseconds longer (depending on the rate of
current rise).
Within a range of several milliseconds, during which the rise of
the short-circuit current can be assumed to be linear, the real
melting time for a sinusoidal current rise and 50 Hz is as follows:
Taking into account preloading, residual value factor RV
Preloading the fuse link shortens the permissible overload
duration and the melting time.
The residual value factor RV can be used to determine the
time that a fuse link can be operated during a periodic or
non-periodic load cycle, above and beyond the previously
determined permissible load current In’, with any overload
current ILa without aging.
The residual value factor RV is dependent on the preloading
V (Irms rms value of the fuse current during the load cycle at
permissible load current In’)
and the frequency of the overloads (see the following diagram,
curves a and b).
Permissible overload and melting time for previous load
a = Frequent surge/load cycle currents (>1/week)
b = Infrequent surge/load cycle currents (<1/week)
c = Melting time for preloading
Permissible overload duration =
Residual value factor RV × melting time tvs
(time/current characteristic curve)
A reduction of the melting time of a fuse link in the case of preloading can
be derived from curve c.
Melting time =
Residual value factor RV × melting time tvs
(time/current characteristic curve)
246
A
1x10
vs
-3
1x10-2
1x10-1
1x100
1x101
1x102
1x10
1x10
4
3
x101x102x103x104
246 2 461 111888
35 A 160 A
s
p
I201_12657
t
Prospective short-circuit current
Virtual pre-arcing time
ts
3xI2ts
Ic
2
---------------=
V
Irms
In
--------=
0
1
c
b
a
V
0,2
0,4
0,6
0,8
I201_12644
01
0,2 0,4 0,6 0,8
Pre-load factor
Residual value factor RV
© Siemens AG 2016
178 Siemens · 10/2015
Configuration
Fuse Systems
SITOR Semiconductor Fuses
Let-through current Ic
The let-through current Ic can be determined from the current
limiting characteristics (current limitation at 50 Hz) specified for
the respective fuse link. This depends on the prospective current
and the DC component when the short circuit occurs (instant of
closing).
The following diagram shows the let-through current Ic of a fuse
link, depending on the prospective short-circuit current Ip using
the 3NE4333-0B SITOR fuse link as an example.
Example:
3NE4333-0B SITOR fuse link
Rated breaking capacity
The rated breaking capacity of all SITOR fuse links is at least
50 kA, unless higher values are specified in the characteristic
curves.
The data applies to a test voltage of 1.1 × Un, 45 Hz to 62 Hz
and 0.1 p.f. 0.2. In the case of inception voltages that are
below the rated voltage, as well as rated currents of the fuse
links that are below the maximum rated current of a fuse series,
the breaking capacity is considerably higher than the rated
breaking capacity.
Peak arc voltage Ûs
During the quenching process, a peak arc voltage Ûs occurs at
the connections of the fuse link that can significantly exceed the
supply voltage. The level of the peak arc voltage depends on the
design of the fuse link and the level of the recovery voltage. It is
presented in characteristic curves as a function of the recovery
voltage Uw (see the following diagram).
Example:
3NE4333-0B SITOR fuse link
The peak arc voltage occurs as a cutoff voltage at the semicon-
ductor devices not in the shorted circuit. In order to prevent volt-
age-related hazards, the peak arc voltage must not exceed the
peak cutoff voltage of the semiconductor devices.
Power dissipation, temperature rise
On reaching the rated current, the fuse elements of the SITOR
fuse links have a considerably higher temperature than the fuse
elements of line protection fuse links.
The power dissipation specified in the characteristic curves is
the upper variance coefficient if the fuse link is loaded with the
rated current.
In the case of partial loads, this power dissipation decreases as
shown in the following diagram.
The temperature rise specified in the characteristic curves
applies to the respective reference point and is determined
when testing the fuse link (test setup according to
DIN VDE 0636, Part 23 and IEC 269-4).
2
A
1x10
I201_12658
2
1x103
1x104
1x105
x102x103x104x105
2246
1111
A
46 46
450 A
c
Prospective short-circuit current
Unlimited peak values:
DC component 50%
DC component 0%
Let-through current
p
0200 400 600
V
800 1000 1200
1000
1400
2000
sV
w
200
400
600
800
1200
1600
1800
U
Û
100
I201_12645
Recovery voltage
Peak arc voltage
100
80
60
40
20
0020 40 60 80 100
%
%
I201_12646
Power dissipation at partial load
(as a % of the power
dissipated at rated current)
n
Load current
(as a % of rated current )
© Siemens AG 2016
179
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Parallel and series connection of fuse links
Parallel connection
If a branch of a converter circuit has several semiconductor
devices so that the fuse links are connected in parallel, only the
fuse link connected in series to the faulty semiconductor device
is tripped in the event of an internal short circuit. It must quench
the full supply voltage.
To boost the voltage, two or more parallel fuse links can be
assigned to a single semiconductor device without reducing
the current. The resulting breaking I2t value increases with the
square of the number of parallel connections. In this case, in
order to prevent incorrect distribution of the current, you must
only use fuse links of the same type or, better still, the parallel
switched SITOR 3NB fuses.
Series connection
There are two kinds of series connection available:
Series connection in the converter branch
Two fused converter branches through which a short-circuit
current flows in series
In both cases, uniform voltage sharing can only be assumed if
the melting time of the SITOR fuse link does not exceed the value
specified in the following table.
Cooling conditions for series-connected fuse links should be
approximately the same. If faults are expected, during which the
specified melting times are exceeded (as a result of a slower
current rise), it can no longer be assumed that voltage sharing
is uniform. The voltage of the fuse links must then be rated so
that a single fuse link can quench the full supply voltage.
It is best to avoid the series connection of fuse links in a con-
verter connection branch and instead use a single fuse link
with a suitably high rated voltage.
Use with direct current
In general, all SITOR fuses can be used for AC and DC applica-
tions. For AC fuse links that are to be used in DC circuits, some
data may vary from the data specified in the characteristic
curves for alternating current.
The new 1250 V DC fuses 3NB1 and 3NB2 have been explicitly
tested with DC voltage. They can also be used with AC voltage;
details on request.
Permissible direct voltage
The permissible direct voltage Uperm of the fuse links depends
on the rated voltage Un, on the time constant =L/R in the DC
circuit and on the prospective current Ip. The permissible direct
voltage refers to the rated voltage Un and is specified depend-
ing on the time constant ; the prospective current is a parameter
(see the following diagrams).
Applies to all series except 3NE10.., 3NE18..
For series 3NE10.., 3NE18..
SITOR fuse links Maximum melting time for uniform
voltage sharing
Type ms
3NC10..
3NC14..
3NC15..
3NC22..
10
3NC24..
3NC58..
3NC73..
3NC84..
40
10
3NE10..
3NE12..
3NE13..
3NE14..
3NE18..
10
20
10
3NE32..
3NE33..
3NE34..
3NE35..
3NE36..
10
20
3NE41..
3NE43..
10
3NE54..
3NE56..
20
3NE64.. 10
3NE74..
3NE76..
20
3NE80..
3NE87..
10
3NE94..
3NE96..
10
20
010 20 30 40 50 60 70 80
ms
20 n
p
I201_12647
= 10 n
p
= 5 n
p
1,00
0,90
0,80
0,70
0,60
0,50
0,40
n
perm
Time constant
perm. DC voltage U
rated voltage U
= L / R
010 20 30 40 50 60 70 80
ms
I201_12648
20 n
p
= 10 n
p
= 5 n
p
0,90
0,80
0,70
0,60
0,50
0,40
0,30
Time constant = L / R
perm. DC vol tage U
rated voltage U (600 V)
perm
n
© Siemens AG 2016
180 Siemens · 10/2015
Configuration
Fuse Systems
SITOR Semiconductor Fuses
Breaking I2t value I2ta
The breaking I2t value I2ta depends on the voltage, on the time
constant =L/R and on the prospective current Ip. It is calcu-
lated from the I2ta value specified in the characteristic curve for
the respective fuse link at rated voltage Un and correction factor
kA whereby, instead of the recovery voltage Uw, the direct volt-
age is used against which the fuse link is to switch.
The breaking I2t value determined in this way applies under the
following conditions:
Time constant L/R25 ms for Ip20 × In
Time constant L/R10 ms for Ip=1In
The breaking I2t values increase by 20 %
For Ip20 × In and time constant L/R=60ms
For Ip=1In and time constant L/R=35ms.
Peak arc voltage Ûs
The peak arc voltage Ûs is determined from the curve specified
in the characteristics for the respective fuse link, whereby in-
stead of the recovery voltage Uw, the direct voltage is used
against which the fuse link is to switch.
The peak arc voltage determined in this way applies under the
following conditions:
Time constant L/R 20 ms for Ip 20 In
Time constant L/R 35 ms for Ip = 10 In.
The switching voltages increase by 20 %
For Ip 20 In and time constant L/R = 45 ms
For Ip = 10 In and time constant L/R = 60 ms.
Indicator
An indicator displays the switching of the fuse link. The SITOR
fuse links have an indicator whose operational voltage lies
between 20 V (Un1000 V) and 40 V (Un>1000V)
Accessories
Fuse bases, fuse pullers
Some of the SITOR fuse links can be inserted in matching fuse
bases. The matching fuse bases (single-pole and three-pole)
and the respective fuse pullers are listed in the Technical speci-
fications, from page 87.
Note:
Even if the values of the rated voltage and/or
current of the fuse bases are lower than those of the allocated
fuse link, the values of the fuse link apply.
© Siemens AG 2016
181
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Fuse switch disconnectors, switch disconnectors with fuses
Some series of SITOR fuse links are suitable for operation in
3NP4 and 3NP5 fuse switch disconnectors or in 3KL and 3KM
switch disconnectors with fuses (see Catalog LV 10, chapter on
"Switch Disconnectors”)..
When using switch disconnectors, the following points must be
observed:
Because, compared with LV HRC fuses for line protection, the
power dissipation of the SITOR fuse links is higher, the permis-
sible load current of the fuse links sometimes needs to be re-
duced; see below (Configuration Manual)
Fuse links with rated currents In > 63 A must not be used
for overload protection even when they have operational
class gR.
Note:
By contrast, all fuse links of the 3NE1... series with rated currents
Infrom 16 A to 850 A and operational classes gR and gS can be
used for overload protection.
The rated voltage and rated isolation voltage of the switch dis-
connectors must at least correspond to the existing voltage
When using fuse links of the 3NE32.., 3NE33.., 3NE43..,
3NC24.. and 3NC84.. series the breaking capacity of fuse
switch disconnectors must not be fully utilized due to the slot-
ted blade. Occasional switching of currents up to the rated
current of the fuse links is permissible
When used in fuse switch disconnectors, fuse links of the
3NE41.. series may only be occasionally switched, and only
without load, as this places the fuse blade under great me-
chanical stress
In the Technical specifications, starting on page 87, the switch
disconnectors are allocated to their respective individual fuse
links.
Specifying the rated current In for non-aging operation with
varying load
Power converters are often operated not with a continuous load,
but with varying loads; these can also temporarily exceed the
rated current of the power converter.
The selection process for non-aging operation of SITOR fuse
links for four typical types of load is as follows:1)
Continuous load
Unknown varying load, but with known maximum current
Varying load with known load cycle
Occasional surge load from preloading with unknown surge
outcome
The diagrams for the correction factors ku, kq, k, kl, page 173,
and the residual value factor RV, page 177 must be observed.
The varying load factor VL for the fuse links is specified on
page 174.
The required rated current In of the fuse link is specified in two
steps:
1. Specifying the rated current In on the basis of the rms value
Irms of the load current:
Permissible load current In’ of the selected fuse link:
In’ = ku kq kl kl VL In
2. Checking the permissible overload duration of current blocks
exceeding the permissible fuse load current In’.
Melting time tvs (time/current characteristic curve) × Residual
value factor RV Overload duration tk
To do this, you require the previous load ratio
as well as the characteristic curve "Permissible overload and
melting time for previous load" (page 177, curve a) and the
"Time/current characteristic curve" for the selected fuse link.
If a determined overload duration is less than the respective re-
quired overload duration, then you need to select a fuse link with
a greater rated current In (taking into account the rated voltage
Un and the permissible breaking I 2t value) and repeat the
check.
Continuous load
Rated current In of the fuse link
ILa = Load current of the fuse link (rms value)
Less than 1 shutdown per week: VL = 1
More than 1 shutdown per week: VL = see Technical specifications,
from page 87.
1) In the case of varying loads that cannot be assigned to one of the four
types of load shown here, please contact us.
InIrms
1
kukqkklVL
-------------------------------------------------
>
V
Irms
In
--------=
t
0
I201_12649
Load current
Load
Load
InILa
1
kukq
k
klVL
----------------------------------------------------
© Siemens AG 2016
182 Siemens · 10/2015
Configuration
Fuse Systems
SITOR Semiconductor Fuses
Unknown varying load, but with known maximum current Imax
Rated current In of the fuse link
Imax =Maximum load current of the fuse link (rms value)
Varying load with known load cycle
ILK =Maximum load current of the fuse link (rms value)
Occasional surge load from preloading with unknown surge
outcome
The required rated current In of the fuse link is specified in two
steps:
1. Specifying the rated current In on the basis of the previous
load current Iprev:
Permissible load current In’ of the selected fuse link:
In’ = ku × kq × k × kl × VL × In
2. Checking the permissible overload duration of the surge
current Isurge
Melting time tvs (time/current characteristic curve) × Residual
value factor RV
surge time tsurge
To do this, you require the previous load ratio
as well as the characteristic curve "Permissible overload and
melting time for previous load" (page 177, curve a or b) and
the "Time/current characteristic curve" for the selected fuse
link.
If a determined overload duration is less than the respective
required overload duration tsurge, then you need to select a fuse
link with a greater rated current In (taking into account the rated
voltage Un and the permissible breaking I 2t value) and repeat
the check.
Condition:
tpause 3 × tsurge
tpause 5 min
Selection examples
For a converter assembly in circuit (B6) A (B6) C, whose rated
direct current is Idn = 850 A, fuse links that can be installed as
branch fuses should be selected. The choice of fuse is shown for
different operating modes of the converter assembly.
Data for converter assembly
Supply voltage
UN = 3 AC 50 Hz 400 V
Recovery voltage
UW = 360 V = UN × 0.9 (for shoot-throughs)
Thyristor T 508N (eupec),
I2t value
i2 dt = 320 × 10 3A2s (10 ms, cold)
Fuse links, natural air cooling,
ambient temperature u = +35 °C
Conductor cross-section for copper fuse links: 160 mm2
Conversion factor
direct current Id/fuse load current ILa: ILa = Id × 0.58.
For the following examples, it is assumed, in the case of loads
that exceed the rated direct current of the converter assembly,
that the converter assembly is rated for these loads.
t
0
I201_12650
max
La
Load current
InImax
1
kukqkklVL
t
'
n
t1t2t3t4
SD
I201_12651
La1
La
La3
La2
RMS
Load current
Irms
I2
Lak t
k
k1=
kn=
SD
--------------------------------------------
=
Irms
I2
La1t1I2
La2t2I2
La3t3
++
SD
----------------------------------------------------------------
=
InIprev
1
kukqkklVL
----------------------------------------------------
>
V
Irms
In
--------=
t
'
t
t
0
I201_12652
n
prev
interval
surge
surge
Load current Load
© Siemens AG 2016
183
Siemens · 10/2015
Fuse Systems
SITOR Semiconductor Fuses
Configuration
Continuous, no-break load
Direct current Id = Idn = 850 A
ILa = Id × 0.58 = 493 A
Selected:
SITOR 3NE3335 fuse link
(560 A/1000 V), VL = 1
Breaking I2t value
I 2tA = 360 × 103 × 0.53 = 191 × 103 A2s
Test cross-section to 172: 400 mm2
The following correction factors are to be applied:
ku = 1.02 (u = +35 °C)
kq = 0.91 (conductor cross-section, double-ended, 40 % of test
cross-section)
k = 1.0 (conduction angle = 120°)
kl = 1.0 (no forced-air cooling)
Required rated current In of the SITOR fuse link:
Unknown varying load, but with known maximum current
Max. direct current Idmax = 750 A
Max. fuse current Imax = Idmax × 0.58 = 435 A
Selected:
SITOR 3NE3334-0B fuse link
(560 A/1000 V), VL = 1
Breaking I2t value
I 2ta = 260 × 103 × 0.53 = 138 × 103 A2s
Test cross-section to 172: 400 mm2
The following correction factors are to be applied:
ku = 1.02 (u = +35 °C)
kq = 0.91 (conductor cross-section, double-ended, 40 % of test
cross-section)
k = 1.0 (conduction angle = 120°)
kl = 1.0 (no forced-air cooling)
Required rated current In of the SITOR fuse link:
Varying load with known load cycle
Direct current:
Id1 =1200 A t1 =20s
Id2 =500 A t2 =240s
Id3 =1000 A t3 =10s
Id4 =0 At4 =60s
Fuse current:
ILa1 =1200 × 0.58 = 696 A
ILa2 = 500 × 0.58 = 290 A
ILa3 =1000 × 0.58 = 580 A
rms value of load current
Selected:
SITOR 3NE3333 fuse link
(450 A/1000 V), VL = 1
Breaking I2t value I2ta = 175 × 103 × 0.53 = 93 × 103 A2s
Test cross-section to 172: 320 mm2
The following correction factors are to be applied:
ku = 1.02 (u = +35 °C)
kq = 0.94 (conductor cross-section, double-ended, 50 % of test
cross-section)
k = 1.0 (conduction angle = 120°)
kl = 1.0 (no forced-air cooling)
1. Required rated current In of the SITOR fuse link:
Permissible load current In’ of the selected fuse link:
In’ = ku × kq × k × kl × VL × In = 1.02 × 0.94 × 1.0 × 1.0 × 1.0
× 450 = 431 A
2. Checking the permissible overload duration of current blocks
exceeding the permissible fuse load current In’.
Previous load ratio:
Residual value factor RV: for V = 0.74 from curve a
(characteristic curve page 177, frequent surge/load cycle
currents) RV = 0.2
Current block ILa1: Melting time tvs: 230 s (from time/current
characteristic curve for 3NE3 333)
tvs × RV = 230 s × 0.2 = 46 s > t1
Current block ILa3: Melting time tvs: 1200 s (from time/current
characteristic curve for 3NE3 333)
tvs × RV = 1200 s × 0.2 = 240 s > t3
t
I2_12653
493 A
La
InILa
1
kukq
k
klVL
-------------------------------------------------
493 A=
493 A 1
1.02 0.91
1.01.0 1.0
-----------------------------------------------------------------
531 A=
max
t
I2_12654
= 435 A
La
InImax
1
kukq
k
klVL
-------------------------------------------------
493 A=
435 A 1
1.02 0.91
1.01.0 1.0
-----------------------------------------------------------------
469 A=
La1
J
e f f
'
n
J
1
J
2
J
4
= 3 3 0 s
= 6 9 6 A
La3
= 5 8 0 A
= 3 1 7 A
J
3
L a 2
= 2 9 0 A
5 ,
I 2 _ 1 2 6 5 5
L a
Irms
696220 2902
+240 580210+
330
---------------------------------------------------------------------------------317A==
InIrms
1
kukq
k
klVL
-------------------------------------------------
493 A=
317 A 1
1.02 0.94
1.01.0 1.0
-----------------------------------------------------------------
331 A=
V
Irms
In
-------- 317
431
--------0.74===
© Siemens AG 2016
184 Siemens · 10/2015
Configuration
Fuse Systems
SITOR Semiconductor Fuses
Occasional surge load from preloading with unknown surge
outcome
Direct current:
Idprev =700 A
Idsurge = 500 A tsurge =8s
Fuse current:
Iprev =Idprev × 0.58 = 406 A
Isurge = Idsurge × 0.58 = 1015 A
Let us assume the conditions
tpause 3 tsurge and tpause 5 min are met.
Selected:
SITOR 3NE3333 fuse link
(560 A/1000 V), VL = 1
Breaking I2t value I2ta = 360 × 103 × 0.53 = 191 × 103 A2s
Test cross-section to 172: 400 mm2
The following correction factors are to be applied:
ku = 1.02 (u = +35 °C)
kq = 0.91 (conductor cross-section, double-ended, 40 % of test
cross-section)
k = 1.0 (conduction angle = 120°)
kl = 1.0 (no forced-air cooling)
1. Required rated current In of the SITOR fuse link:
Permissible load current In’ of the selected fuse link:
In’ =ku × kq × k × kl × VL × In =
1.02 × 0.91 × 1.0 × 1.0 × 1.0 × 560 = 520 A
2. Checking the permissible overload duration of the
surge current Isurge
Previous load ratio:
Residual value factor RV: for V = 0.78 from curve a (character-
istic curve page 177, frequent surge/load cycle currents)
RV = 0.18 surge current Isurge: Melting time tvs: 110 s
(from time/current characteristic curve for 3NE3333)
tvs × RV = 110 s × 0.18 = 19.8 s > tsurge
correction factors can be found on page172 and page 173.
t
t
= 406 A
= 1015 A
= 8 s
I201_12656
La
prev
surge
surge
InIprev
1
kukq
k
klVL
-------------------------------------------------
493 A=
406 A 1
1.02 0.91
1.01.0 1.0
-----------------------------------------------------------------
437 A=
V
Iprev
In
----------406
520
--------0.78===
© Siemens AG 2016
185
Siemens · 10/2015
Fuse Systems
Photovoltaic Fuses
Introduction
Overview
Special demands are made on fuses for application in photovol-
taic systems. These fuses have a high DC rated voltage and a
tripping characteristic specially designed to protect PV modules
and their connecting cables (the newly defined operational class
gPV). It is also crucial that the PV fuses do not age in spite of
strongly alternating load currents, in order to ensure high plant
availability throughout the service life of the PV system. The
fuses must also be able to withstand high temperature fluctua-
tions without damage. These requirements were only incorpo-
rated into an international standard in recent years and have
now been published as IEC 60269-6.
All Siemens photovoltaic fuse systems comply with this new
standard. Furthermore, they also already comply with the re-
cently agreed corrections to the characteristic curves, which will
be incorporated in the next standard update.
The IEC cylindrical fuses used as phase fuses also correspond
to the characteristic curves specified in UL standard UL 2579.
The non-fusing current Inf and fusing current If test currents are
crucial to the shape of the characteristic curves.
These test currents of gPV phase fuses to 32 A apply to a
conventional test duration of one hour; at Inf, the fuse must
not trip within an hour, at If, it must trip within an hour.
The PV cylindrical fuses of size 10 mm x 38 mm offer an espe-
cially space-saving solution for the protection of the strings.
The fuse holders of size 10 x 38 mm can be supplied in single-
pole and two-pole versions with and without signal detectors.
In the case of devices with signal detector, a small electronic
device with LED is located behind an inspection window in the
plug-in module. If the inserted fuse link is tripped, this is indi-
cated by the LED flashing. The devices have a sliding catch that
enables removal of individual devices from the assembly. The in-
feed can be from the top or the bottom. Because the cylindrical
fuse holders are fitted with the same anti-slip terminals at the top
and the bottom, the devices can also be bus-mounted at the top
or the bottom.
The PV fuses in LV HRC design are usually used as cumulative
fuses upstream of the inverter. In addition, they can also be used
for protecting groups (PV subarrays). For the PV cumulative
fuses of size 1, the standard LV HRC fuse bases are available.
For PV cumulative fuses of size 1L, 1XL, 2L, 2XL and 3L, we have
developed a special 3NH7...-4 fuse base with a swiveling mech-
anism which combines maximum touch protection with maxi-
mum user-friendliness. This makes it possible to change fuses
safely and without the need for any tools, such as a fuse handle.
This provides safe and fast access even in an emergency.
Our cylindrical fuse holders and fuse bases with swiveling
mechanism comply with the IEC 60269-2 standard and are
considered fuse disconnectors as defined in the IEC 60947
switchgear and controlgear standard. Under no circumstances
are they suitable for switching loads.
To ensure that PV fuses are correctly selected and dimensioned,
the specific operating conditions and the PV module data must
be taken into account when calculating voltage and current
ratings.
Benefits
Protection of the modules and their connecting cables in the
event of reverse currents
Safe tripping in case of fault currents reduces the risk of fire
due to DC electric arcs
Safe isolation when the fuse holder/fuse base is open
PV cylindrical fuse system, 3NW70..-4, 3NW60..-4 PV LV HRC fuse systems, 3NH73..-4, 3NE13..-4D
Standard Inf If
Current IEC standard 1.13 x In1.45 x In
UL standard 1.0 x In1.35 x In
Future IEC standard 1.05 x In1.35 x In
Siemens fuses 1.13 x In1.35 x In
© Siemens AG 2016
186 Siemens · 10/2015
PV cylindrical fuses
Fuse Systems
Photovoltaic Fuses
Technical specifications
1) Degree of protection IP20 is tested according to regulations using a
straight test finger (from the front), with the device mounted and equipped
with a cover, housing or some other enclosure.
Cylindrical fuse links Cylindrical fuse holders
3NW60..-4 3NW66..-4 3NW70..-4 3NW76..-4
Size mm x mm 10 x 38 10 x 85
Standards IEC 60269-6 IEC 60269,
IEC 60269-2,
IEC 60947,
UL 4248-1, -18
IEC 60269,
IEC 60269-2,
IEC 60947,
UL 4248-1, -18
Approvals UL 248-13, waiver
certification for China
(2 to 16 A)
U
(File No. E469670)
U
(File No. E355487),
s,
(versions without
signal detector)
U(E355487)
Operational class gPV
Rated voltage UnV DC 1000 1500 (20 A: 1200 V) 1000 1500
Rated current InA DC 2 to 20 4 to 20 30 32
Rated short-circuit strength kA -- 30
Rated breaking capacity kA DC 30 10 --
Breaking capacity
Utilization category -- AC-20B, DC-20B
Max. power dissipation of the fuse link W-- 4 6
Rated impulse withstand voltage kV -- 6--
Overvoltage category -- II --
Pollution degree -- 2--
No-voltage changing of fuse links -- Yes
Sealable when installed -- Yes
Mounting position Any, preferably vertical
Current direction --
Any (signal detector with antiparallel LED)
Degree of protection acc. to IEC 60529 -- IP20, with connected conductors1)
Terminals with touch protection acc. to BGV A3
incoming and outgoing feeder
-- Yes
Ambient temperature °C -25 to +55°C, humidity 90 % at +20°C
Conductor cross-sections
Finely stranded, with end sleeve mm2-- 0.75 ... 25
AWG (American Wire Gauge) AWG -- 18 ... 4
Tightening torque Nm -- 2.5
© Siemens AG 2016
187
Siemens · 10/2015
Fuse Systems
Photovoltaic Fuses
PV cylindrical fuses
Characteristic curves
Time/current characteristics diagram 3NW600.-4 Time/current characteristics diagram 3NW660.-4
Characteristic curves diagram Correction factor Ambient temperature
[s]
vs
10
4
6
4
2
10
3
6
4
2
10
2
6
4
2
10
1
6
4
2
10
0
6
4
2
10
-1
6
4
2
10
-2
6
4
2
10
-3
10
0
[A]
p
810
1
462846210
2
10
3
84622
12 A
16 A
10 A
8 A
6 A
4 A
2 A
20 A
Prospective short-circuit current
Virtual pre-arcing time
I201_18898
[s]
vs
10
4
6
4
2
10
3
6
4
2
10
2
6
4
2
10
1
6
4
2
10
0
6
4
2
10
-1
6
4
2
10
-2
6
4
2
10
-3
10
3
[A]
p
810
4
462846210
5
10
6
8462
16 A
20 A
12 A
10 A
8 A
6 A
4 A
Prospective short-circuit current
Virtual pre-arcing time
I201_19161
Correction factor; ambient temperature k
K
C
°
0,8
0,85
0,9
0,95
1
1,05
1,1
0 102030405060708090
I202_02187
© Siemens AG 2016
188 Siemens · 10/2015
PV cylindrical fuses
Fuse Systems
Photovoltaic Fuses
Dimensional drawings
3NW600.-4 3NW660.-4
10x38mm 10x85mm
3NW70. .-4
1-pole 2-pole
3NW7613-4
Circuit diagrams
1-pole 2-pole
38
I2_06703c
10,3
I201_19112
G
85
8,2
I202_01298
45
81
37
749
58
3618
I201_19111
22,3
2,5 Nm
40
48
58
64,5
130
104,5
2
1
4
3
2
1
© Siemens AG 2016
189
Siemens · 10/2015
Fuse Systems
Photovoltaic Fuses
PV cylindrical fuses
More information
Selecting and dimensioning photovoltaic fuses from
Siemens
Standards:
The contents of the new standard IEC 60269-6 are currently
being drawn up.
We follow this new standard when rating and labeling our
PV fuses. Until now, some of our rivals have been relying on
products based on the standard IEC 60269-4 "Fuses for semi-
conductor protection". Differences between the two standards
are particularly evident for the rated voltage and the test voltage
and in the definition of the operational class.
Ter ms :
UOC STC (also called VOC STC)1)
Voltage under standard test conditions on an unloaded string
taking into account minimum ambient temperature (no-load volt-
age). The voltage UOC STC of a string is obtained by multiplying
the single voltages UOC STC of a PV module (UOC STC xM
2)).
ISC STC
Short-circuit current of a PV module, a PV string, a PV sub-
generator or a PV generator under standard test conditions
IMPP
Is the largest possible working current of a string
(MPP = Maximum Power Point).
IPmax
Is the maximum occurring load current; this is usually equivalent
to IMPP
.
ISC MOD
Short-circuit current of a PV module under regional conditions.
Standard test conditions (STC)
Test conditions that are laid down in EN 60904-3 for PV cells and
PV modules:
Solar radiation 1000 W/m²
Ambient temperature 25 °C
Air distribution (AM) 1.5
Standard test conditions are normally specified by the manufac-
turer of the PV module in data sheets.
Operational class
We use draft standard IEC 60269-6 as a guide when naming the
operational class gPV. Accordingly, the symbols are also on the
fuse:
It is important that the fuse has a full-range characteristic that
can cut off with certainty all possible fault currents, and espe-
cially also small fault currents3).
The test currents for PV fuses are defined in draft standard
IEC 60269-6.
Inf =1.13xIn (test current at which the fuse must not trip
for one hour).
If=1.45xIn (test current at which the fuse must trip
within one hour).
For the time/current characteristic curve diagram, see page 187.
Rated making and breaking capacity
Under draft standard IEC 60269-6 a rated breaking capacity
of at least 10 kA is required. While this is comparatively low
compared with other fuses, it is more than adequate for handling
the fault currents occurring in PV systems.
We have tested our PV fuses at 30 kA.
Dimensioning rules
PV fuses are to be dimensioned according to special rules with
regard to rated voltage, rated current and operational class
(characteristic).
Dimensioning rule
The rated voltage4) of the fuse should be calibrated 20 % higher
than the open-circuit voltage UOC STC of a string. Extreme
operating conditions, e.g. temperatures down to -25 °C, are thus
taken into account.
Rated voltage
Our PV fuses have been tested according to draft standard
IEC 60269-6 with the rated voltage, i.e. the test voltage is the
same as the rated voltage.
Based on IEC 60269-4, some manufacturers have issued two
voltage values for their fuses, e.g. 900 V (tested 1000 V).
Rated current
1. To prevent unwanted tripping of the PV fuse during normal
operation and in case of a fault in a different string that is
connected in parallel, the rated current of the PV fuse must
be greater than the short-circuit current ISC of the respective
module or string: In1.4 ISC.
The value 1.4 was determined in draft standard IEC 60269-6
and should apply to the simple dimensioning of the fuse.
This value contains the following correction factors for the
standard test conditions:
A higher ambient temperature of 45 °C, a higher solar radiation
of 1200 W/m² and the reduction due to the variable loading.
An additional reduction must be used when several fuse holders
are bundled.
According to EN 60469-1, Table 1, the following reduction
factors must be applied:
Since the fuses are only operated with around 70 to 80 % of the
load current, a further reduction is only necessary from around
six main circuits (e.g. three two-pole devices), including also
where the fuses only have maximum power dissipation of 3.4 W.
1) Voltage of the unloaded circuit under standard test conditions.
2) M is the number of PV modules connected in series in a string.
3) Note: A difference in the overload current and the short-circuit current is
not meaningful when protecting PV systems, because even for a short
circuit, only small currents occur, which are not designated as short-circuit
currents in terms of the standards of overcurrent protective devices.
Therefore in the following we shall refer to fault currents.
4) Note: Unlike with mechanical switching devices, when two fuses (positive
pole and negative pole) are used, you cannot count on a division of the
voltage in the event of fault current tripping. Accordingly every fuse must
be dimensioned with the full rated voltage.
I202_01302
I202_01303
Number of main circuits Rated diversity factor
2 and 3 0.9
5 and 6 0.8
6...9 0.7
10 and more 0.6
© Siemens AG 2016
190 Siemens · 10/2015
PV cylindrical fuses
Fuse Systems
Photovoltaic Fuses
Fuses with a lower rated current have a lower power dissipation,
so that the reduction is considerably less The 10 A fuse for
example has a rated power dissipation of 1.5 W, with the result
that no reduction is necessary here.
In the event of extreme solar radiation a further reduction of the
rated current of the fuse may be necessary.
The short circuit current ISC MOD is dependent on regional
climatic conditions. Under particular climatic conditions and
cloud constellations, in particular high in the mountains, higher
values for the solar radiation than the 1200 W/m² used above
may by all means occur (above: simplified calculation).
In order to incorporate the peak values into the calculation, we
recommend using the following correction factors.
The rated current of the fuse refers to an ambient temperature
of 25 °C.
Cut-off performance will change at higher temperatures.
A further reduction may be required for an ambient temperature
higher than the ambient temperature used above (+45 °C).
2.To protect the modules and their connecting cables, the
PV fuse should cut off fault currents reliably and in time.
Fault currents can result from faulty modules, double ground
faults or incorrect wiring. The PV modules are rated in such a
way that they can continuously withstand the fault current in
the forward direction without any problems.
However, fault currents which flow through the string or the
PV module in a reverse direction are particularly critical.
This fault current ISC REVERSE is calculated from the number
of parallel connected strings n-1 multiplied by the short circuit
current ISC MOD of a string or module.
ISC REVERSE =n-1xISC MOD
This ISC MOD is likewise dependent on the regional circum-
stances described above:
ISC MOD =1.2
1) xISC STC
Only above n = 3 parallel strings are PV phase fuses meaningful
at all.
To protect the PV modules against reverse currents ISC REVERSE
that have a value higher than the reverse current resistance of
the PV modules IMOD REVERSE, the "cut-off current" of the PV fuse
must be of a smaller size than the permitted and tested reverse
current resistance of the module.
You can dispense with PV fuses if the reverse current resistance
of the PV modules is greater than the fault current:
IMOD REVERSE >ISC REVERSE
The manufacturers of the modules normally test their modules
with a 1.35x reverse current for two hours.
For protection, you therefore need a fuse that trips earlier under
these conditions.
1) Climate zone-dependent correction factor 1.2 … 1.6
(see the table on page 190).
2) Iz is the permitted capacity of the line/cable.
The PV fuses have a "disconnect current" (generally referred to
as high test current If), which causes the fuse to disconnect at
1.45 x the rated current in less than one hour (at the latest).
To connect the tested reverse current resistance of the
PV modules IMOD REVERSE with the cut-off performance of
the fuse, we recommend use of a conversion factor of 0.9.
For the rated current of the PV fuse, In produces the following
dimensioning rules:
In0.9 x IMOD REVERSE
This does not consider possible fault currents, if any, which are
fed by the back-up batteries and/or the solar converters.
Protection of the factory-fitted connecting cables of the
PV modules should be mainly ensured by the manufacturer.
Connecting cables/wires of a string must generally be able to
withstand n times the short-circuit current ISC MOD. As with other
cables and wires, the following simple relationship applies:
InIz2)
If several strings connected in parallel are grouped together, the
aforementioned dimensioning rules also apply. The rated current
of the PV fuse group should be at least 1.21) times greater than
the total of the short-circuit currents of the group.
Climate zone Max. solar radiation Correction
factor
Standard test conditions 1000 W/m² 1
Moderate climate zone 1200 W/m² 1.2
Moderate climate zone/high mountains 1400 ... 1600 W/m² 1.4 ... 1.6
Africa 1400 ... 1600 W/m² 1.4 ... 1.5
© Siemens AG 2016
191
Siemens · 10/2015
Fuse Systems
Photovoltaic Fuses
PV cumulative fuses
Technical specifications
Characteristic curves
Time/current characteristics diagram 1000 V Time/current characteristics diagram 1500 V
Fuse links Fuse bases
3NE1...-4 / -4D / -4E / -5E 3NH7...-4
Size 11L 2L 3L 1XL 2XL 11L 2L 3L 1XL 2XL
Standards IEC 60269-6 IEC 60269, IEC 60269-2, IEC 60947
Operational class gPV
Rated voltage UnV DC 1000 at time constant (L/R) 3 ms
1500 at time constant (L/R) 3 ms
1000 1500
Rated current InA DC 63 ... 160 200/250 315/400 500/630 63 ... 200 250/315 250 400 630 250 400
Rated short-circuit strength kA -- 30
Rated breaking capacity kA
DC
30 --
Breaking capacity
Utilization category -- AC-20B, DC-20B (switching without load)
Max. power dissipation of the
fuse link
W-- 40 90 110 130 90 110
No-voltage changing of
fuse links
-- Ye s
Sealable when installed -- Yes
Mounting position Any, preferably vertical
Current direction --
Any
Ambient temperature °C -25 to +55°C, humidity 90 % at +20°C
Tightening torque Nm -- 20
Microswitch for "tripped" signaling
5 A/250 V AC, 0.2 A/250 V DC
In the status “fuse not blown", contacts 1 and 3 are closed.
1
2
3
8104
6
104
6
4
2
103
6
4
2
102
6
4
2
101
6
4
2
100
6
4
2
10-1
6
4
2
428103
4628102
46
10-2
6
4
2
10-3
1012
vs
63 A
80 A
100 A
125 A
160 A
200 A
250 A
315 A
400 A
500 A
630 A
2
Virtual melting time
Prospective short-circuit current
I202_02188b
10 -3
10 -2
2
4
6
10-1
2
4
6
10 0
2
4
6
10 1
2
4
6
10 2
2
4
6
10 3
2
4
6
6
2
4
224466
10
5
10 4
246
10
3
246
10 2
10 1
vs
Virtual pre-arcing time
Prospective short-circuit current
63 A
80 A
100 A
125 A
160 A
200 A
250 A
315 A
I201_18418
104
© Siemens AG 2016
192 Siemens · 10/2015
PV cumulative fuses
Fuse Systems
Photovoltaic Fuses
Dimensional drawings
3NE1
3NH73..-4
Fuse bases with swiveling mechanism, 3NH7 3..-4
Circuit diagrams
1-pole
Size Inbh1 h2 t1 t2 Type a b c d
Amm mm
163 ... 160 52 66.5 135 50 13.5 3NX3121 67 71.3 44 50.5
1L 200, 250 52 106.5 175 50 13.5 3NX3122 81 78.8 71 77
2L 315, 400 60 106.5 189 57 15 3NX3123 95 93.3 80 86
3L 500, 630 75 125.5 201 68.5 17.5
1XL 63 ... 200 52 126.5 189 50 13.5
2XL 250, 315 60 126.5 205 57 15
Drilling plan
Size Dimensions Size Dimension a
a1 a2 b c d e f g mm
mm 125
171.3 71.3 266 230 67 124 316.4 317.7 1L 65
1L 71 75 306 270 73 130 362 313 2L 65
2L 79 83 326 296 87 144 390 335 3L 80
3L 93 97 341 311 101 158 418 359 1XL 84
1XL 71 76 325 289 73 124 380 332 2XL 80
2XL 79 83 341 311 87 144 410 354
b
1
h2
h
2
t
1
t
I201_10899a
b
a
c
d
I201_19154
d
f
d
b
a1
a2
6
c
e
g
I202_02190a
30
102,5 a
20,5
11
20,5
I202_02191
2
1
© Siemens AG 2016
© Siemens AG 2016
The information provided in this brochure contains merely general
descriptions or characteristics of performance which in case of actual
use do not always apply as described or which may change as a result
of further development of the products. An obligation to provide the
respective characteristics shall only exist if expressly agreed in the
terms of contract. Availability and technical specifications are subject
to change without notice.
All product designations may be trademarks or product names of
Siemens AG or supplier companies whose use by third parties for their
own purposes could violate the rights of the owners.
Siemens AG
Energy Management
Low Voltage & Products
Postfach 10 09 53
93009 REGENSBURG
GERMANY
Subject to change without prior notice
PDF (3ZW1012-3NW10-0AB1)
PH 0216 196 En
Produced in Germany
© Siemens AG 2016
www.siemens.com/lowvoltage
© Siemens AG 2016