August 1991 &) HARRIS 2N6784 N-Channel Enhancement-Mode Power MOS Field-Effect Transistor Features 2.25A, 200V * rpS(on) = 1.52 SOA is Power-Dissipation Limited Nanosecond Switching Speeds * Linear Transfer Characteristics * High Input Impedance Majority Carrier Device Description The 2N6784 is an n-channel enhancement-mode silicon-gate power MOS field-effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors Package TO-205AF BOTTOM VIEW SOURCE GATE (o) 2) DRAIN (CASE) Terminal Diagram N-CHANNEL ENHANCEMENT MODE requiring high speed and low gate-drive power. This type can be D operated directly from integrated circuits. The 2N6784 is supplied in the JEDEC TO-205AF (Low Profile TO-39) metal package. G Ss Absolute Maximum Ratings (To = +259C) Unless Otherwise Specified 2N6784 UNITS Drain-Source Voltage .. 0... cece cee ee cere teen een ne eeene 200* v Drain-Gate Voltage (Rag = 20KN). .. 6. cece ee cee eee 200* v Continuous Drain Current TGF F250 cece ene nen cnet ene e enna ees 2.25* A To = +100C 1.5* A Pulsed Drain Current (Note 2) ........ 0.0 cece ee g* A Gate-Source Voltage ......... cece eee ene eee +20* v Continuous Source Current (Body Diode)........ 2.25* A Pulse Source Current (Body Diode) (Note 2) g* A Maximum Power Dissipation To = +259C (See Figure 14)... 6.6 cece eee eee e ene nes Pp 15 Ww Above Tc = +259C, Derate Linearly (See Figure 14) ...............085 0.12* WC Inductive Current, Clamped .... 0.0.0.0 e cece ee te eee ee eee eteeeeees ILM 9 A (L = 100uH) Operating and Storage Junction Temperature Range. -55 to +150* C Maximum Lead Temperature for Soldering .......... 00.0 cce eee e eee ee T 300* C {0.063" (1.6mm) from case for 10s) *JEDEC registered vatues CAUTION: These devices are sensitive to electrostatic discharge. Proper 1.C. handling procedures should be follawed. File Number 1 906.1 Copyright Harris Corporation 1991 4-44Specifications 2N6784 Electrical Characteristics @ Tc = 25C (Untess Otherwise Specified) Units Ves = OV, Vpg = 26V,f = 10 See Fig. 10 Vop = 78V, Ip = 1.5A, Z, = 500 ns See Fig. 15 ns {MOSFET switching times are essentially independent ns of operating temperature.) w = ' = mA, See 16. Ww : = See Fig. Thermal Resistance Rinc__Junation-to-Case a oo ] e Ring Junction-to-Ambient [.- [. = | 175 | C/W | Free Air Operation | a ire : sas : z2 Source-Drain Diode Switching Characteristics (Typical) z 2 thr Raverse Recovery Time 290 [ns] Ty = 150C, Ip = 2.25, dipidt = 100A/us = x Gap Reverse Recovered Charge 2.0 [ut | Ty = 180C, ip = 2.25A, dipidt = 100Alus Ou ton Forwerd Turn-on Time intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. z z a *JEDEC registered value 4 Pulse Test: Pulse width < 300us, Duty Cycle < 2%. us PULSE 10 80 us Vos >!Dion} x Ros(an) MAX. 5 Ty = -55C a g g z Ty: 2 1 = = i =z x= 2 of s = Ty= 125C e =z z = = S10 = 3 uo z z < z = S 3 05 3 s 02 4V, Ot a 10 20 30 0 50 a) 2 4 6 8 10 12 4 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS} Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 - Typical output characteristics. Fig. 2 - Typical transfer characteristics. 4-452N6784 80 1s PULSE TEST TION IN THIS AREA LIMITED BY Rogion} a _ 2 g = = 6 2 = = 5 s E rs & & 3 = & 5 z 4 < = 5 = So a = 3 Te = 259C 2 ~ Ty = 150C MAX Rihac = 8.33 KW SINGLE PULSE Q ayv 0 2 4 6 a 10 0 2 5 WwW 20 50 100 200 $00 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. na oe 2 a o nn o bo Zenac(t Rinse. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) 9.08 1, OUTY FACTOR, B= + SINGLE PULSE (TRANSIENT 2. PER UNIT BASE = Ren = 8.33 DEG. CW. 0.02 THERMAL IMPEDANCE) 3. Tym > Te = Pom Zensctt) 0.01 52 5 wt 2 5 wd 2 5 we 2 5 wl 2 5 19 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 - Maximum effective transient thermal impedance, junction-to-case versus pulse duration. 80 us > lovon) x Rosiont Ty= 56C Ty= 1259C Ty= 150C Ofs, TRANSCONDUCTANCE (SIEMENS) y= 25C bor. REVERSE ORAIN CURRENT (AMPERES) a 2 4 6 8 10 0 lp, DRAIN CURRENT (AMPERES) 10 20 30 40 $0 Vgp, SOURCE-TO-DAAIN VOLTAGE (VOLTS) Fig. 6 - Typical transconductance versus drain current. Fig. 7 ~ Typical source-drain diode forward voltage. 4-462N6784 22 - = Vos" 46 ip 1.258 BVpgs, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NQAMALIZED) RpSion). DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 02 ~40 0 40 80 120 160 40 0 40 80 190 160 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 - Breakdown voltage versus temperature. Fig. 9 - Typical normalized on-resistance versus temperature. Vos? 9 = TMH? Cras = Cg + Cog, Cay SHORTED Crgg = Con Coe Cod Coss = Cos + om Coe Ot = Cds + Cog = 4ay Vps = 100V bo Vpg = t60V N-CHANNEL POWER MOSFETs C, CAPACITANCE (pF) Vag. GATE-TO-SOURCE VOLTAGE (VOLTS} 0 10 20 30 40 50 0 2 4 5 a 10 Vos, ORAIN.TO-SQUACE VOLTAGE [VOLTS} ,, TOTAL GATE CHARGE (nC) Fig. 10 - Typical capacitance versus drain-to-source Fig. 11 - Typical gate charge versus gate-to-source voltage. voltage. _- Toto T 25 Alpston) MEASURED WITH CURRENT PULSE OF a 2.0jis DURATION. INITIAL Ty = 25C. (HEATING = FP EFFECT OF 2.0 ys PULSE IS MINIMAL} + : Pil ly 20 2 3 | a x | Z 2 |! | g a Po || =10V = 1 Vss 10 = 15 6 5 a a 677 oP z a = 10 2 -+_+_+ + pC 2 Z Veg 20V ; 5 1 - GS 2 = : : 05 8 rt = ak, 0 a 2 4 6 8 10 25 50 75 100 125 750 Ip, DRAIN CURRENT (AMPERES) Tp. CASE TEMPERATURE (C} Fig. 12 - Typical on-resistance versus drain current. Fig. 13 - Maximum drain current versus case temperature. 4-472N6784 Pp, POWER DISSIPATION (WATTS) 20 4g 60 a0 100 120 19 Te, CASE TEMPERATURE (C) Fig. 14 - Power versus temperature derating curve. HP. R010A TERTRONIX PULSE ose GEN. NOTES: J, LHOO63 CASE GROUNDED. 2. GR OUNDED CONNECTIONS COMMON TO GROUND PLANE ON BOARD. 3. PULSE WIDTH =3 us, PERIOO=1 ms, AMPLITUDE=10V. YGs(on) +10V INPUT Vesiott) OV INPUT PULSE RISE TIME INPUT PULSE FALL TIME ty Vosiott) ouTPUT Yosian) NOTES: WHEN MEASURING RISE TIME, Vggign) SHALL BE AS SPECIFIEO ON THE INPUT WAVEFORM. WHEN MEASURING FALL TIME, Vggigff) SHALL BE SPECIFIED ON THE INPUT WAVEFORM. THE INPUT TRANSITION AND DRAIN VOLTAGE RE- SPONSE DETECTOR SHALL HAVE RISE AND FALL RESPONSE TIMES SUCH THAT DOUBLING THESE RESPONSES WILL NOT AFFECT THE RESULTS GREATER THAN THE PRECISION OF MEASUREMENT, THE CURRENT SHALL BE SUFFI- CIENTLY SMALL SO THAT DOUGLING IT DOES NOT AFFECT TESTS RESULTS GREATER THAN THE PRECIS(ON OF MEASUREMENT. Fig. 15 - Switching time test circuit. 04s BLOCKING DIODE MIR 1 NOTES: SET Vg TO THE VALUE SPECIFIED UNDER DETAILS USING A D.1s PULSE WIOTH WITH A MINIMUM OF 1 MINUTE BETWEEN PULSES. INCREASE Vgg UNTIL THE SPECIFIED VALUE OF Ip AND Vpg ARE OATAINED. CASE TEMPERATURE = 25C 2. SELECT Rg SUCH THAT Ine Rg = 2.5 + 1.0 Vide. Fig. 16 - Safe operating test circuit. 4-48