Special Subject Book January 2000
SMD Packages
Never stop thinking
Thermal Resistance
Theory and Practice
http://www.infineon.com
EEddiittiioonn JJaannuuaarryy 22000000
PPuubblliisshheedd bbyy
IInnffiinneeoonn TTeecchhnnoollooggiieess AAGG,,
SStt..--MMaarrttiinn--SSttrraassssee 5533,,
DD--8811554411 MMüünncchheenn
©© IInnffiinneeoonn TTeecchhnnoollooggiieess AAGG 11999999
AAllll RRiigghhttss RReesseerrvveedd..
AAtttteennttiioonn pplleeaassee!!
The information herein is given to describe
certain components and shall not be
considered as warranted characteristics.
Terms of delivery and rights to technical
change reserved.
We hereby disclaim any and all warranties,
including but not limited to warranties of
non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC
manufacturer.
IInnffoorrmmaattiioonn
For further information on technology,
delivery terms and conditions and prices
please contact your nearest Infineon
Technologies Office in Germany or our
Infineon Technologies Representatives
worldwide (see address list).
WWaarrnniinnggss
Due to technical requirements components
may contain dangerous substances.
For information on the types in question
please contact your nearest Infineon
Technologies Office.
Infineon Technologies Components may
only be used in life-support devices or
systems with the express written approval
of Infineon Technologies, if a failure of such
components can reasonably be expected to
cause the failure of that life-support device
or system, or to affect the safety or
effectiveness of that device or system.
Life support devices or systems are
intended to be implanted in the human
body, or to support and/or maintain and
sustain and/or protect human life. If they
fail, it is reasonable to assume that the
health of the user or other persons may be
endangered.
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
SMD-Package Properties for Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Using a Printed Circuit Board as a Heat Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Static Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Dynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Determining the Static Heat Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Measuring the Rthj-a in the Real Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Determining the Dynamic Heat Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Package and Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Thermal Resistance - Theory and Practice
Contents
InfineonTechnologies AG
Infineon Technologies AG4
Thermal Resistance - Theory and Practice
Power-SMD applications or
what’s the size of the heat sink ?
More and more frequently,
modern SMD-component users
(Surface Mounted Devices) ask
the question, “What’s the size of
the heat sink ?”
The reason: The trend from
through-hole packages to
low-cost SMD-applications is
marked by the improvement of
chip technologies.
„Silicon instead of heat sink“ is
therefore possible in many cases.
The printed circuit board (PCB)
itself becomes the heat sink. As
many applications today use
PCBs assembled with SMD-
technology, the emphasis is on
Power-ICs in SMD packages
mounted on single-sided PCBs
laminated on one side.
Pricing pressure demands simple
processes and lowest-cost
solutions. This report describes a
solution.
Introduction
Infineon Technologies AG 5
1.27
1.45
-0.2
17
8.75
-0.2
14 8
1.75 max.
0.2
6
±0.2
0.35 x 45˚
-0.2
4
0.1
-0.1
0.4
+0.8
Index Marking
P-DSO-14-4P-TO252-3-1
1)
+0.15
0.35
2)
0.2 14x
1)
0.19
+0.06
8 max.
L
Package
Footprint / Dimensions
Dimensions in mm
e
1.27P-DSO-14-4
A
5.69
L
1.31
B
0.65
B
A
e
5.4
±0.1
-0.10
6.5
All metal surfaces thin plated,
except area of cut.
+0.15
A
±0.5
9.9
6.22
-0.2
1
±0.1
±0.15
0.8
0.15
±0.1
max
per side 0.75
2.28
4.57
+0.08
-0.04
0.9
2.3
-0.10
+0.05
B
min0.51
±0.1
1
+0.08
-0.04
0.5
0...0.15
BA0.25
M
0.1
3x
(4.17)
5.8
6.4
2.2
10.6
5.76
1.2
Figure 1 Heat Sink - vs. Thermal Enhanced Package Types
SMD-Package Properties for
Power Applications
There are two basic groups of
packages:
Heat Sink packages are the first
group.The heat sink (chip carrier -
lead frame) is soldered directly to
the PCB. The thermal resistance
of this packages between chip
and heat sink is called Rthj-c
(junction-case) and has low
values.
Thermal Enhanced Leadframes
constitute the second group of
packages. Metal bridges are
connected between the chip
carrier (lead frame) and the pins.
From the outside, this package
looks identical to standard
components because the plastic
molding compound conceals
these details. Figure 1 shows
both types of packages with the
examples P-TO252-3-1 (D-Pack)
and P-DSO-14-4 (3 center pins
each per side of the cooling path).
The internal structure is described
in more detail in this report and
can be seen in Figure 11.
Infineon Technologies AG6
Thermal Resistance - Theory and Practice
Using a printed circuit board
as a heat sink ?
How do I calculate that ?
How big does my heat sink
need to be ?
Which size do we need ?
In earlier fabrications, a solid heat
sink was either screwed or
clamped to the power package. It
was easy to calculate the thermal
resistance from the geometry of
the heat sink.
In SMD-technology, this
calculation is much more difficult
because the heat path must be
evaluated: chip (junction) - lead
frame - case or pin - footprint -
PCB materials (basic material,
thickness of the laminate) - PCB
volume - surroundings.
As the layout of the PCB is a main
contributor to the result, a new
technique must be applied. The
Appendix proivdes thermal data for
all packages listed in Table 1.
Let us start with some
theoretical considerations:
Static Properties
To facilitate discussion of the
static properties of a Power IC
(PIC), the internal structure of a
PIC and its method of mounting
on a PCB or heat sink is
illustrated in Figure 2. The PIC
consists of a chip mounted on a
chip carrier or lead frame, and
held by solder or bonding
adhesive. The lead frame consists
of a high-conductivity material
such as copper, and can have a
Table 1 The Most Important
SMD-Packages
Package Heat Sink / Pin
P-DSO-8-1
P-DSO-14-4 Pin 3-5; 10-12
P-DSO-16-1
P-DSO-20-1
P-DSO-20-6 Pin 4-7; 14-17
P-DSO-24-3 Pin 5-8; 17-20
P-DSO-28-6 Pin 6-9; 20-23
P-DSO-20-10 Tab
P-DSO-36-10 Tab
P-TO252-3-1 (D-Pack)
SCT-595-5-1 Pin 2; 5
SOT-223-4-2 Tab or Pin 4
P-TO263-5-1 Tab
Tab
Infineon Technologies AG 7
thickness of several millimeters.
The associated static equivalent
circuit is shown in Figure 3. The
following analogies with electrical
quantities have been used:
CThe power dissipation PV
occurring close to the chip
surface is symbolized by a
current source.
CThe thermal resistances are
represented by ohmic
resistors. The “resistance”
network is essentially a serial
connection to the ambient
temperature. As a first
approximation, the parallel-
connected thermal resistance
of the molding (broken lines)
can be neglected in power
packages.
CThe ambient temperature is
represented by a voltage
source.
In accordance with the analogy,
the thermal current PV= Q/tcan
now be calculated from the
“thermic Ohm’s law”
V= IRas Tj- Ta= PVRthj-a.
For the purpose of discussing the
application as a whole, the
function PV= ƒ(Ta) is of practical
interest. One obtains:
PV= - Ta/ Rthj-a + Tj/ Rthj-a.
This is a descending straight line
of gradient -1 / Rthj-a with its zero
at Tj.
Figure 2 Internal Structure of
a PIC and Method of
Mounting on
a Heat Sink
Chip (Die)
Molding compound
(Molding)
Heat sink or PCB
(Heat sink)
Chip adhesive / Lot
(Die bond)
Chip carrier
(Leadframe)
Solder
=
PVTjTa
Tc
Die
bond
Die Lead-
frame Solder Heat
sink
Rth
Molding
Rth Rth
Rthj-c
Rthj-a
Rth
Application
Rth Rth Rth
Figure 3 Static Equivalent
Circuit for the
Structure
shown in Figure 2
Infineon Technologies AG8
Thermal Resistance - Theory and Practice
In Figure 4, this function is
shown for the P-DSO-14-4 Pack-
age (Thermal Enhanced Power
Package) mounted on the
standard application board. From
this function, the user can derive
the permissible power dissipation
directly for any ambient
temperature. At Ta= 85 °C, for
example, the permissible
dissipation is approxi-
mately
0.7 W. The exact value can
be
calculated from the equation
PV= (Tj- Tamax) / Rthj-a =
65 K / 92 K/W = 0.7 W.
It should be noted that in the data
sheets of the PICs the power
dissipation is given as a function
of the package (case) tempera-
ture TC, because the application-
specific thermal resistances are
not known to the manufacturer.
This function, like the previous
one, is a descending straight line.
The slope now has the value
1 / Rthj-c. The zero remains at Tj.
As an example, this function is
presented in Figure 5 for the
P-TO252-3-1 Package.
The new P-TO252-3-1 package
has a thermal resistance of max.
4 K/W and is unique in the small
size of its base area when com-
pared with packages of equivalent
performance (PCB board area). At
approximately 30 °C, the permis-
sible power dissipation is 30 W.
Higher power dissipation is
prevented by intervention of the
chip-internal current limiters. For
this reason, the value for power
dissipation at lower temperatures
remains constant. Figure 5 Permissible Power Dissipation of
the P-TO252-3-1 as a Function of
the Package (Case) Temperature
Figure 4 Permissible Power Dissipation of the
P-DSO-14-4 Package Mounted on a
PCB with 300 mm² Cooling Area, as
a Function of Ambient Temperature
0TC
PV
W
˚C150100500
10
Rthj-c = 4 K/W
20
30
Ta
Tj
PV
W
W 1.63 W
150 ˚C100500
0.54
0
1.08
1.63
PV = 1 W
T = 92 ˚C
Parameter: Tjmax = 150 ˚C
Rthj-a = 92 K/W
Tamax = 85 ˚C
Tj
Tamax
Rthj-a
PVO = 150
92
=
Infineon Technologies AG 9
Dynamic Properties
As mentioned earlier, the thermal
behavior of PICs changes when
dynamic phenomena are
considered (pulse power
operation). This behavior can be
described in terms of thermal
capacity Cth, which is directly
proportional to the relevant
volume V(in cm³), to the density
ρ(in g/cm³) of the material and to
a proportionality factor of the
specific heat cin Ws/g K.
The applicable equation is:
Cth = c ρV= mc
This means: The thermal capacity
of a body of mass m= ρV
corresponds to the quantity of heat
needed to heat the body by 1 °C.
To calculate the temperature
change Tit is necessary to use
the quantity-of-charge equation
for a capacitance C.
The equation is:
VC= I t= Q
By analogy, the quantity-of-heat
equation is:
TCth = P t= Q
This means: Just as the current
I= Q/trepresents a transport of
charge per unit of time, the
power dissipation Prepresents
the transport of thermal energy
per unit of time. Consequently:
T=
The equivalent circuit of the
P-TO263-7-3 power package, with
the thermal capacities added, is
shown in Figure 6. The thermal
capacities calculated from the
material and the volume are
shown in parallel with the thermal
resistances.
When calculating the components
of a network it is necessary to
know the thickness d, the cross-
sectional area Aand the thermal
conductivity Lin W/m K, in order
to obtain the appropriate thermal
resistance Rth. The formula is:
Rth =
]
K
W
[
d
LA
P t
Cth
Figure 6 Thermal Equivalent
Circuit of the
P-TO263-7-3 Package
(Simplified)
3 mWs/K 300 mWs/K
0.24 K/W0.48 K/W
Heat sink
RthD RthHS
τHS = 70 msτD = 1.5 ms
CthD
PVTcase
Die
CthHS =
Infineon Technologies AG10
Thermal Resistance - Theory and Practice
A
8˚ max.
BA0.25
M
0.1 Typical
9.8 ±0.15
±0.2
10
8.51)
81)
(15)
±0.2
9.25 ±0.3
1
0...0.15
7x0.6 ±0.1
±0.1
1.27 4.4 Footprint
B
0.5
±0.1
±0.3
2.7
4.7±0.5
0.05
1)
0.1
All metal surfaces tin plated, except area of cut.
±0.3
1.3
2.4
6x1.27
8.42
10.8
9.4
16.15
4.6
0.47
0.8
To calculate the thermal capacity
Cth, it is necessary to know the
volume V= dA, the specific
weight ρin g/cm3 and the speci-
fic thermal capacity cin Ws/g K.
The thermal capacity Cth is
calculated from:
Cth = mc(Ws/T).
The package dimensions are
shown in Figure 7.
Table 2 lists all the important
parametric data of the
P-TO263-7-3 package.
Figure 7 Outline Drawing of the P-TO263-7-3 Power Package
Table 2 Parametric Data of the P-TO263-7-3
AHS
Area (effective area of 64 mm²)
dHS
Thickness
LCu
Thermal conductivity of cooper
RthHS
Thermal resistance of heat slug ρCu
Specific weight of cooper
mHS
Mass of heat slug
cCu
Spec, thermal capacity of Cu
CthHS
Thermal capacity of heat slug τHS
Thermal time constant of heat slug
Symbol
14
1.27
384
0.24
8.93
0.8
0.385
310
70
Value
mm²
mm
W/m
K
K/W
g/cm³
g
Ws/g
K
mWs/K
ms
Dimension
Parameters for the Heat Slug
AD
Area
dD
Thickness
LSi
Thermal conductivity of silicon
RthD
Thermal resistance of chip ρSi
Specific weight of silicon
mD
Mass of chip
cSi
Spec, thermal capacity of Si
CthD
Thermal capacity of chip τD
Thermal time constant of chip
Symbol
5
360
150
0.48
2.33
4.2
approx. 0.7
approx. 3
approx. 1.5
Value
mm²
µm
W/m
K
K/W
g/cm³
mg
Ws/g
K
mWs/K
ms
Dimension
Parameters for the Chip
Infineon Technologies AG 11
The die bond and molding
components have been omitted
from this discussion because they
do not significantly influence the
calculation of Rthj-c.
For reference, these data are
listed here:
CRthDB = 0.01 to 0.1 K/W;
CCthDB = 0.1 to 0.5 mWs/K;
C
τ
DB = 1 to 50 ms;
CRthM = 100 K/W;
CCthM = 0.64 Ws/K and
C
τ
M= 64 s.
(Die Bond = index: DB;
molding = index: M)
The time constance of the die
bond is smaller than that of the
chip by two orders of magnitude
and can, thus, be neglected.
The thermal resistance RthM of
the molding is even three orders
of magnitude bigger than that of
the chip and that of the heat slug,
and, being in parallel, can be
neglected also.
Pulse operation and the associat-
ed chip temperature responses
also deserve examination.
In accordance with the analogy to
electrical systems, the chip tem-
perature response can be viewed
like a voltage increase across an
RC section which is being fed by
a current pulse generator.
The following relationship applies:
V(t) = RI(1 - et/R C)
and for the increase in tempera-
ture:
T(t) = Rth P(1 - et/Rth Cth)
This heating-up and cooling-down
process is presented qualitatively
in Figure 8 (valid for tp>> 2 ms
only).
The chip temperature goes up
and down between Tmin and Tmax.
The variation depends on the
magnitude of the power pulse
and its duty cycle.
Figure 8 Chip Temperature Tj
vs. Time, for Periodic
Pulse Operation
t
PV
Tj
t
Tmax
Tmin
Tavg
T
tp
Infineon Technologies AG12
Thermal Resistance - Theory and Practice
This junction temperature
transients can be represented in
the form of a function if the
dynamic thermal impedance
Zth = (Tmax - Tmin) / PV
is shown versus pulse width tpfor
different duty cycles (duty cycle =
DC = tp/T) (Figure 9).
A special case of this representa-
tion is the dynamic thermal
impedance in single-pulse
operation (DC = 0). Figure 10
shows the thermal impedance in
single-pulse operation for the
medium-power package
P-DSO-14-4 for three different
cooling areas on the PCB.
This function clearly shows the
regions of dominance of the
various time constants of the
chip, the lead frame, and the
PCB.
The chip time constant tDlies in
the millisecond range, whereas
the lead frame dominates in the
range of several 100 ms and the
PCB in the 100-second range.
single pulse
0.50
D =
0.20
0.10
0.05
0.02
0.01
10 -4 -7
10
Zthj-c
10-6 10-5 10-4 10-3 10-2 10-1 s 100
-3
10
-2
10
-1
10
0
10
K/W
tp
Figure 9 Dynamic Thermal
Impedance Zthj-c of a
P-TO263-7-3 Package
10
-3
0
20
40
60
80
100
120
10
-2
10
-1
10
0
10
1
10
2
10
3
600 mm
2
300 mm
2
Footprint
Z
thj-a
K/W
t
p
s
Figure 10 Thermal Impedance of the
P-DSO-14-4 Package for
Single-Pulse Operation
Infineon Technologies AG 13
Finite Element Method (FEM)
The steps of the Finite Element
Method (FEM) are explained
below and one example is
provided per group.
The geometric data of the
package is entered into the FEM
model to calculate the thermal
resistance. This avoids time-
consuming measurements.
Figure 11 shows an implemented
model.
Figure 11
P-TO252-3-1 P-DSO-14-4
FEM Model of Heat Sink and
Thermal Enhanced Package
Infineon Technologies AG14
Thermal Resistance - Theory and Practice
Figure 12
The temperatures of the
individual components (chip, die-
pad, molding compound, and
leadframe) can be viewed
individually or in combination
(Figure 12).
Chip with two active areas (dice only) Mold compound without cooling
tab,chip and lead frame
P-TO252-3-1 without mold compound
with
PV
= 3 W for determining the
Rthj-c
Chip and lead frame of the
SOT223-4-2 package on a PCB
with heat sink
Lead frame of the SCT595-5-1 on a
PCB with heat sink
SOT223-4-2 on a PCB with 6 cm²
heat sink; Rthj-a ~ 70 K/W is calculated
at PV= 0.5 W
FEM Analysis Possibilities
Infineon Technologies AG 15
Three different PCBs have been
created for each package model.
They differ in the size of the
copper laminated area A (heat
sink) which is linked to the heat
dissipating parts of the case (die-
pad in the P-TO252-3-1 or center
pins in the P-DSO-14) (Figure 13).
1 1
P-DSO-14-4
1
123
6 cm² 3 cm² Footprint only
P-DSO-14-4P-DSO-14-4
Application-Board for
R
th
Measurement
R
th
-P-DSO-14-4 LP 1.0
Application-Board for
R
th
Measurement
R
th
-P-TO252-3-1 LP 1.1
-16-1
a
a/2 0.375
a
a/2 0.375
0.67
P-TO252-3-1
1IQ 1
P-TO252-3-1
I Q
P-TO252-3-1
1I Q
123
Footprint only
6 cm² 3 cm²
a
a/2
a
a/2
Figure 13 PCB-Layout for FEM-Simulation
P-DSO-14-4 and P-TO252-3-1
Infineon Technologies AG16
Thermal Resistance - Theory and Practice
Determining the Static Heat
Resistance
The FEM simulation calculates
the thermal static resistance Rthj-a
(junction-ambient) and the Rthj-c
(junction-case) for packages with
enhanced die-pad or Rthj-pin
(junction to a defined pin) for
thermal enhanced P-DSO
packages without die-pad. This
value depends only slightly on the
active chip area. It is sufficient to
simulate just one medium-sized
chip (>2 mm²).
If the static thermal resistance
Rthj-a is applied versus the PCB
heat sink area, a very important
function is obtained for the
application of the component. By
estimating the heat sink area in a
real application, the user can
easily determine the expected
Rthj-a, especially as the simulated
values are calculated in still air.
Therefore, they represent the
“worst case“. In real applications
the values for the heat resistance
are much lower. At an air stream
of 500 lin ft/min (linear feet per
minute) the Rthj-a of the
P-DSO-14-4 for example is up to
15 % lower (Figure 15).
R
thj-pin
= 31.7 K/W
0
40
A
R
thj-a
50
60
70
80
90
100
K/W
120
100 200 300 400 500 600mm
2
0 100 200 300 400 500 mm
2
600
A
40
R
thj-a
60
80
100
120
K/W
160
R
thj-c
= 1.8 K/W
P-DSO-14-4 P-TO252-3-1
112
92
78
143.9
78
54.7
Figure 14 Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A at zero airflow
0
Airspeed Airspeed
R
thj-a
60
70
80
90
100
110
K/W
120
100 200 300 400 600m/min m/min0 50 100 150 200
40
60
80
100
120
140
160
R
thj-a
K/W
P-DSO-14-4 P-TO252-3-1
Footprint only
A
= 300 mm
2
A
= 600 mm
2
Footprint only
A
= 300 mm
2
A
= 600 mm
2
Figure 15 Thermal Resistance Junction to Ambient Rthj-a vs.
Airspeed for the P-DSO-14-4 and P-TO252-3-1 Packages
Infineon Technologies AG 17
Measuring the Rthj-a in a
Real Application:
Using the measurement described
below the real thermal resistance
can be determined.
To determine the actual Rthj-a the
temperature difference between
chip temperature Tj and ambient
temperature Tais required. The
equation Rthj-a = applies.
The power loss PVand the ambient
temperature Tacan be determined
easily in a temperature chamber or
calculated.
To measure the chip temperature
(Tj) requires a little trick:
A temperature sensor is required
on the chip which can also be read
during operation. In many products
a substrate diode can be used at
an output (Status, Reset, etc.) to
measure the chip temperature.
To do this, the forward voltage VF
of the diode is measured at load
independent current as a
calibration curve. Due to the
characteristic temperature behavior
of the forward voltage - it has a
negative temperature coefficient of
approx. -2 mV/K - the relevant chip
temperature can be determined.
The calibration curve is measured
in the temperature chamber with
airflow. The power loss should be
kept as low as possible to ensure
the chip temperature remains
equal to the ambient temperature.
For the voltage regulator
TLE 4269 GM (P-DSO-14-4 Package)
a calibration curve (measured at
the diode at the reset output, pin 7).
RO is illustrated in Figure 16.
Figure 17 shows the
corresponding measuring circuit.
Tj-Ta
PV
Figure 16 Calibration Curve TLE 4269 GM for IRO = -500 µA
(current drawn from Pin 7; RO)
0
0
100
200
300
400
500
600
700
T
V
F
50 100 150
mV
˚C
Infineon Technologies AG18
Thermal Resistance - Theory and Practice
The Rthj-a of any application can be
determined by measuring the
forward voltage of an output with
substrate diode during operation
(Figure 17).
When the switch S1 is closed and
the output voltage VQ= 5 V, the
output current is A.
The power loss PV= (VI- VQ) IQ
in the chip of the voltage
regulator is now 1 W. Now,
change the ambient temperature
Taand measure the respective
forward voltage VFof the diode.
The appropriate Tjfor every VF
value can be read from the
calibration curve VF= ƒ(Tj).
The exact heat resistance of the
real application is calculated with
this values in the formula
Rthj-a =
Parameters such as air flow can
be changed without affecting the
measuring accuracy.
Tj-Ta
PV
5
35
Figure 17 Measuring Circuit
with TLE 4269GM
R
F
100 k
T
RO
Substrat
diode
of T
RO
TLE 4269 GM
T
Power
P-DSO-14-4
V
I
= 12 V
C
I
10
µ
F
I
V
F
~ 0.7 V
I
F
~ 500
µ
A
+
R
L
35
S
1
C
Q
22
µ
F
Q9
13
7
3-5; 10-12
RO
V
B
50 V
R
PU
20 k
1. Measurement of function VF =
f
(Ta):
S1 open; we get IQ = 0 mA
and PV = VI * II ~ 0 mW
Ta ~ Tj
2. Measurement of thermal resistance junction to ambient Rthj-a:
S1 closed; we get IQ = VQ / RQ
and PV = (VI - VQ) * IQ ~ 1 W
Tj then can be found by measuring VF at given Ta from function VF vs. Ta
then we get Rthj-a = (Ta - Tj) / 1 W
PV
Ta
Tj
= Power losses
= Ambient temperature
= Junction temperature
Infineon Technologies AG 19
Determining the Dynamic
Heat Resistance
The FEM analysis is used also for
dynamic processes.
As described above, the dynamic
thermal impedance is defined as
the ratio of the temperature
difference T= Tj- Ta(chip tem-
perature - start temperature) after
the time tpto the power loss.
If a transient FEM simulation is
performed, it is easy to obtain the
graph Zthj-a = ƒ(tp) (dynamic
thermal impedance as a function
of the pulse width tp).
For the P-TO252-3-1 (D-Pack) and
the P-DSO-14-4 the thermal
impedances for the above-
mentioned PCB configurations are
specified (Figure 18).
The peak temperatures can be
calculated easily from these
curves:
– P-TO252-3-1 (D-Pack)
– 3 cm² heat sink
– Power loss PV= 10 W
– Pulse width tp= 200 ms
– Ambient temperature
Ta= 85 °C.
From the middle curve (Figure 18),
the Zthj-a of approximately 3.5 K/W
at tp= 200 ms gives a tem
pera-
ture rise T= PVx Zthj-a of 35 K
and finally a peak temperature
Tjmax of 85 °C+35 °C = 120 °C.
Figure 18 Thermal Impedance
Junction to Ambient
Zthj-a vs. Single
Pulse Time tp
0
Z
thj-a
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
120
K/W
60
40
80
20
100
t
p
s
Footprint
300 mm
2
600 mm
2
P-DSO-14-4 P-TO252-3-1
Z
thj-a
600 mm
2
300 mm
2
160
K/W
120
100
80
60
40
20
0
Footprint
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Infineon Technologies AG20
Thermal Resistance - Theory and Practice
For each case listed in Table 1,
a „Package and Thermal
Information“ data sheet is
provided in the appendix.Each
data sheet shows the footprint
and case dimensions. The various
versions of the PCBs used for the
simulation are shown. It shows
the heat distribution diagrams and
the result diagrams of the FEM
simulation. The left side shows
the diagram of the static thermal
resistance Rthj-a depending on the
PCB heat sink area A. It includes
the related thermal resistance
Rthj-c (junction-case) or Rthj-pin.
On the right side is the diagram
for the dynamic heat resistance
Zthj-a, with three graphs for the
various PCB heat sinks depending
on the single pulse duration tp.
This information is a valuable aid
for SMD Power applications. It is
intentionally limited to PCBs
laminated on one side because it
represents the cost optimum. For
double sided PCBs or multilayers
a simple attempt with
conductance cross sections can
be made to determine the change
in the PCB thermal resistance
(compare
thermal data sheet of
P-DSO-20-10
with P-DSO-36-10 in
the appendix).
The PCBs are usually installed in
closed plastic cases. The most
favorable heat path then usually
forms at plug contacts to the
cables because a supply wire
with an adequate cross section is
ideal as a heat conductor.
The future of chip placement
requires mechatronic solutions
where the PCB can be replaced
by chip-connector-supply wire
configurations.
Summary
Infineon Technologies AG 21
P-DSO-8-1 22
P-DSO-14-4 23
P-DSO-16-1 24
P-DSO-20-1 25
P-DSO-20-6 26
P-DSO-24-3 27
P-DSO-28-6 28
P-DSO-20-10 29
P-DSO-36-10 30
SCT595-5-1 31
SOT223-4-2 32
P-TO252-3-1 33
P-TO263-5-1 34
Package and Thermal Information
Appendix
Infineon Technologies AG22
111
123
P-DSO-8-1
6 cm² 3 cm² Footprint only
P-DSO-8-1 P-DSO-8-1
a/2
a
0.375
0.67
0.67
0.375
a
a/2
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
1.27
0.2
1.75 max.
-0.1
14
5
-0.2
85
4
-0.2
6
±0.2
0.19
+0.06
0.1 0.4
+0.8
0.35 x 45˚
Index Marking
1)
+0.15
0.35
2)
0.2 8x
1)
-0.2
1.45
8 max.
L
Package
Reflow soldering
e
1.27P-DSO-8-1
A
5.69
L
1.31
B
0.65
B
A
e
Dimensions in mm
0
100
A
R
thj-a
100 200 300 400 500 600mm
2
t
p
0
Z
thj-a
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
K/W
K/W
110
120
130
140
150
160
170
190
20
40
60
80
100
120
140
160
200
600 mm
2
300 mm
2
Footprint
164
185
142
R
thj-pin2
= 71.8 K/W
Footprint/Dimensions
PC-Board
Finite Element Method
Diagrams
P-DSO-8-1
Infineon Technologies AG22
A = 600 mm²; Ta= 298 K; Tmax = 369 K
FEM Simulation (chip area 2 mm²; Pv= 0.5 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
A = 300 mm²; Ta= 298 K; Tmax = 380 K Footprint only; Ta= 298 K; Tmax = 390 K
Infineon Technologies AG 23
1 1
P-DSO-14-4
1
1 2 3
6 cm² 3 cm² Footprint only
P-DSO-14-4P-DSO-14-4
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
-16-1
a
a/2 0.375
a
a/2 0.375
0.67
1.27
1.45
-0.2
1 7
8.75
-0.2
14 8
1.75 max.
0.2
6
±0.2
0.35 x 45˚
-0.2
4
0.1
-0.1
0.4 GND GND
+0.8
Index Marking
1)
+0.15
0.35
2)
0.2 14x
1)
0.19
+0.06
8 max.
L
Package
e
1.27P-DSO-14-4
A
5.69
L
1.31
B
0.65
B
A
e
Reflow soldering Dimensions in mm
0
Z
thj-a
120
K/W
60
40
80
20
100 Footprint
300 mm
2
600 mm
2
R
thj-pin4
= 31.7 K/W
112
92
78
40
R
thj-a
50
60
70
80
90
100
K/W
120
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Package and Thermal Information
Footprint/Dimensions
P-DSO-14-4
PC-Board
Finite Element Method
Diagrams
Infineon Technologies AG 23
A = 600 mm²; Ta= 298.1 K; Tmax = 377.7 K
FEM Simulation (chip area 2 mm²; Pv= 1 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
Footprint only; Ta= 298 K; Tmax = 410.1 KA = 300 mm²; Ta= 298 K; Tmax = 389.8 K
Infineon Technologies AG24
P-DSO-14-4
1
3
Footprint only
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
-16-1
L
Package
Reflow soldering
e
1.27P-DSO-16-1
A
5.69
L
1.31
B
0.65
B
A
e
1.27
1.45
-0.2
1
8
10
-0.2
16 9
1.75 max.
0.2
6
±0.2
0.35 x 45˚
-0.2
4
0.1
-0.1
0.4
+0.8
Index Marking
1)
+0.15
0.35
2)
0.2 16x
1)
0.19
+0.06
8 max.
Dimensions in mm
R
thj-pin4
= 48.2 K/W
40
R
thj-a
0
Z
thj-a
Footprint
50
60
70
80
90
100
110
K/W
130 121
20
40
60
80
100
K/W
140
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Infineon Technologies AG24
Footprint/Dimensions
PC-Board
Finite Element Method
Diagrams
P-DSO-16-1
Footprint only; Ta= 298 K; Tmax = 419.1 K
FEM Simulation (chip area 2 mm²; Pv= 1 W; zero airflow)
Application-Board for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
Infineon Technologies AG 25
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
1
3
Footprint only
P-DSO-20-1
-24-3
-28-6
-20-6
L
Package
e
1.27P-DSO-20-1
A
9.73
L
1.67
B
0.65
B
A
e
Reflow soldering
1 10
1120
Index Marking
2.65 max.
0.1
0.2
-0.1
2.45
-0.2
+0.15
0.35
1.27
2)
0.2 20x
-0.2
7.6
1)
0.35 x 45˚
0.23
+0.8
10.3
0.4
12.8
-0.21)
+0.09
±0.3
8˚max.
Dimensions in mm
R
thj-pin5
= 43.6 K/W
40
R
thj-a
50
60
70
80
90
100
K/W
120
0
Z
thj-a
20
40
60
80
K/W
120
Footprint
109
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Package and Thermal Information
Infineon Technologies AG 25
Footprint/Dimensions
P-DSO-20-1
PC-Board
Finite Element Method
Diagrams
Footprint only; Ta= 298 K; Tmax = 407 K
FEM Simulation (chip area 2 mm²; Pv= 1 W; zero airflow)
Application-Board for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
1 1 1
1 3
a/2
a
6 cm² Footprint only
P-DSO-20-6
-24-3
-28-6
2
3 cm²
P-DSO-20-1
-24-3
-28-6
-20-6
-28-6
-24-3
P-DSO-20-6
a/2
0.3
a0.375 0.375
0.3
GND GND
L
Package
e
1.27P-DSO-20-6
A
9.73
L
1.67
B
0.65
B
A
e
Reflow soldering
1 10
1120
Index Marking
2.65 max.
0.1
0.2
-0.1
2.45
-0.2
+0.15
0.35
1.27
2)
0.2 20x
-0.2
7.6
1)
0.35 x 45˚
0.23
+0.8
10.3
0.4
12.8
-0.21)
+0.09
±0.3
8˚max.
Dimensions in mm
R
thj-pin5
= 22.9 K/W
40
R
thj-a
0
Z
thj-a
20
40
60
80
K/W
120
50
60
70
80
90
K/W
110 100
74
81 600 mm
2
300 mm
2
Footprint
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Infineon Technologies AG26
Footprint/Dimensions
PC-Board
Finite Element Method
Diagrams
P-DSO-20-6
A = 600 mm²; Ta= 298 K; Tmax = 372 K
FEM Simulation (chip area 2 mm²; Pv= 1 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
A = 300 mm²; Ta= 298 K; Tmax = 379 K Footprint only; Ta= 298 K; Tmax = 397 K
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
1 1 1
1 3
a/2
a
6 cm² Footprint only
P-DSO-20-6
-24-3
-28-6
2
3 cm²
P-DSO-20-1
-24-3
-28-6
-20-6
-28-6
-24-3
P-DSO-20-6
a/2
0.3
a0.375 0.375
0.3
L
Package
Reflow soldering
e
1.27P-DSO-24-3
A
9.73
L
1.67
B
0.65
B
A
e
15.6-0.4
24 13
1 12
Index Marking
1)
0.35+0.15 0.2 24x
-0.2
2.65 max.
0.1
0.2 -0.1
2.45
1)
-0.2
7.6
0.35 x 45˚
0.23
+0.09
10.3
GND GND
0.4 +0.8
1.27
2) ±0.3
8˚max.
Dimensions in mm
40
R
thj-a
0
Z
thj-a
K/W
76.4
67.4
60.5
K/W
10
20
30
40
50
60
70
90
R
thj-pin6
= 20.5 K/W
600 mm
2
300 mm
2
Footprint
45
50
55
60
65
70
75
80
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Infineon Technologies AG 27
A = 600 mm²; Ta= 298 K; Tmax = 358 K
FEM Simulation (chip area 2 mm²; Pv= 1 W; zero airflow)
Application-Boards for Rth - Measurement
Package and Thermal Information
Footprint/Dimensions
P-DSO-24-3
PC-Board
Finite Element Method
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
A = 300 mm²; Ta= 298 K; Tmax = 365 K Footprint only; Ta= 298 K; Tmax = 374 K
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
1 1 1
1 3
a/2
a
6 cm² Footprint only
P-DSO-20-6
-24-3
-28-6
2
3 cm²
P-DSO-20-1
-24-3
-28-6
-20-6
-28-6
-24-3
P-DSO-20-6
a/2
0.3
a0.375 0.375
0.3
L
Package
e
1.27P-DSO-28-6
A
9.73
L
1.67
B
0.65
B
A
e
Reflow soldering
1 14
1528
18.1-0.4
Index Marking
1)
2.45
-0.1
0.2
2.65 max.
-0.2
0.1
0.2 28x
8˚max.
+0.09
0.23
7.6 1)
-0.2
0.35 x 45˚
10.3
+0.8
±0.3
0.4
1.27
+0.15
0.35 2)
GND GND
Dimensions in mm
R
thj-pin7
= 20.1 K/W
40
R
thj-a
0
Z
thj-a
10
20
30
40
50
K/W
70
45
50
55
60
65
K/W
600 mm
2
300 mm
2
Footprint
61.4
56
51
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Infineon Technologies AG28
Footprint/Dimensions
PC-Board
Finite Element Method
Diagrams
P-DSO-28-6
A = 600 mm²; Ta= 298 K; Tmax = 349 K
FEM Simulation (chip area 2 mm²; Pv= 1 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
Footprint only; Ta= 298 K; Tmax = 359 KA = 300 mm²; Ta= 298 K; Tmax = 354 K
Infineon Technologies AG 29
11 1
1 3
6 cm² Footprint only
2
3 cm²
P-DSO-20-10P-DSO-20-10P-DSO-20-10
a
0.375
a/2
0.3
a
a/2
0.375
0.3
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
L
Package
e
1.27P-DSO-20-10
A
13.48
L
1.83
B
0.68
B
A
e
Reflow soldering
+0.07
-0.02
-0.3
1.2 2.8
1.3
0.25
20x0.25 M
1)
Heatsink
0.95
14.2
+0.15
Index
Marking
15.9
101
0.1
+0.13
0.4
1.27
3.5 max.
0
6.3
11
3.25
20 11
±0.15
±0.1
±0.15
1 x 45˚
±0.3
±3˚
±0.15
15.74 ±0.1
A
A
1) B
0.25 MB
(Heatsink)
GND
Dimensions in mm
R
thj-c
= 2.4 K/W
30
R
thj-a
0
Z
thj-a
10
20
30
40
50
60
600 mm
2
300mm
2
Footprint
35
40
45
50
55
60 K/W
K/W
55
41
36
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
A = 600 mm²; Ta= 298 K; Tmax = 406 K
FEM Simulation (chip area 2 mm²; Pv= 3 W; zero airflow)
Application-Boards for Rth - Measurement
Package and Thermal Information
Footprint/Dimensions
P-DSO-20-10
PC-Board
Finite Element Method
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
Footprint only; Ta= 298 K; Tmax = 463 KA = 300 mm²; Ta= 298 K; Tmax = 421 K
Infineon Technologies AG30
P-DSO-36-10 P-DSO-36-10
FR4; 47
x
50
x
1.5 mm; 70 µ Cu
A = 600 mm²; 24.5 x 24.5 mm FR4; 47
x
50
x
1.5 mm; 70 µ Cu
A = 300 mm²; 16 x 19 mm
L
Package
Reflow soldering
e
0.65P-DSO-36-10
A
13.48
L
1.83
B
0.45
B
A
e
+0.07
-0.02
±0.1
1.1 2.8
1.3
0.25
36x0.25
M
1)
Heatsink
0.95
14.2
+0.1
Index
Marking
15.9
181
0.1
+0.13
0.25
0.65
3.5 max.
0
6.3
11
3.25
36 19
±0.15
±0.1
±0.15
1 x 45˚
±0.3
±3˚
±0.15
15.74 ±0.1
A
A
1) B
0.25 B
(Heatsink)
GND
Dimensions in mm
Rthj-c = 2 K/W
20
Rthj-a
25
30
35
40
45
50
K/W
60
36.8
28.6
Zthj-a
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
K/W
0
10
20
30
40
50
60
600 mm2
300 mm2
Infineon Technologies AG30
Footprint/Dimensions
PC-Board
Finite Element Method
Diagrams
P-DSO-36-10
A = 600 mm²; Ta= 298 K; Tmax = 398 K A = 300 mm²; Ta= 298 K; Tmax = 427 K
FEM Simulation (chip area 2 mm²; Pv= 3.5 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
Infineon Technologies AG 31
1 1 1
1 3
6 cm² Footprint only
2
3 cm²
SCT595
INH
QI
QI
INH
INH
I Q
GND
GND
GND
SCT595 SCT595
a0.375
0.3a/2
0.375
0.3
a/2
a
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
Reflow soldering
acc. to
+0.2
1.9
0.6
-0.05
+0.1
+0.1
-0.05
0.3
B
A
0.25
M
B
1.1 max
2.6 max
10˚max
0.1 max
A
M
0.20
2.9
±0.2
1.6
±0.1
DIN 6784
(2.2)
(0.3)
1.2
-0.05
+0.1
4
321
5
0.95
-0.06
+0.1
0.15
10˚max
0.95
1.9
0.5
2.9
1.4
0.8
GND
GND
Dimensions in mm
R
thj-pin5
= 25.9 K/W
80
R
thj-a
Z
thj-a
600 mm
2
300 mm
2
0
100
120
140
160
K/W
200
Footprint
20
40
60
80
100
120
140
160
K/W
200
178.7
98.5 87
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Package and Thermal Information
Infineon Technologies AG 31
Footprint/Dimensions
SCT595-5-1
PC-Board
Finite Element Method
Diagrams
A = 600 mm²; Ta= 298 K; Tmax = 315 K
FEM Simulation (chip area 2 mm²; Pv= 0.2 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
A = 300 mm²; Ta= 298 K; Tmax = 318 K Footprint only; Ta= 298 K; Tmax = 334 K
Infineon Technologies AG32
1 1 1
13
6 cm² Footprint only
2
3 cm²
SOT223SOT223SOT223
III
Q GND Q GND Q GND
a/2
a
0.3
a
a/2
0.3
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 24.49 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
GND
Reflow soldering
±0.1
±0.2
±0.1
0.7
4
3
21
6.5
3
acc. to
+0.2
DIN 6784
1.6
±0.1
15˚max
±0.04
0.28
7
±0.3
±0.2
3.5
0.5
0.1 max
min
B
M
0.25
B
B
2.3
4.6
A
M
0.25
3.5
1.4
1.1 1.2
1.4 4.8
Dimensions in mm
60
R
thj-a
Z
thj-a
0
80
100
120
140
K/W
180
20
40
60
80
100
120
140
K/W
180
R
thj-pin4
= 16.5 K/W
600 mm
2
300 mm
2
Footprint
164.3
81.2 68
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Infineon Technologies AG32
Footprint/Dimensions
PC-Board
Finite Element Method
Diagrams
SOT223-4-2
A = 600 mm²; Ta= 298 K; Tmax = 332 K
FEM Simulation (chip area 2 mm²; Pv= 0.5 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
A = 300 mm²; Ta= 298 K; Tmax = 339 K Footprint only; Ta= 298 K; Tmax = 380 K
Infineon Technologies AG 33
P-TO252-3-1
1I Q 1
P-TO252-3-1
I Q
P-TO252-3-1
1I Q
1 2 3
Footprint only
6 cm² 3 cm²
a
a/2
a
a/2
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 24.49 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
5.4
±0.1
1 3
-0.10
6.5
+0.15
A
±0.5
9.9
6.22
-0.2
1
±0.1
±0.15
0.8
0.15
±0.1
max
per side 0.75
2.28
4.57
+0.08
-0.04
0.9
2.3
-0.10
+0.05
B
min0.51
±0.1
1
+0.08
-0.04
0.5
0...0.15
BA0.25
M
0.1
3x
(4.17)
Reflow soldering
5.8
6.4
2.2
10.6
5.76
1.2
GND
Dimensions in mm
R
thj-c
= 1.8 K/W
40
R
thj-a
Z
thj-a
600 mm
2
300 mm
2
160
K/W
120
100
80
60
40
20
0
60
80
100
120
K/W
160
Footprint
143.9
78
54.7
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Package and Thermal Information
Infineon Technologies AG 33
Footprint/Dimensions
P-TO252-3-1
PC-Board
Finite Element Method
Diagrams
A = 600 mm²; Ta= 298 K; Tmax = 353 K
FEM Simulation (chip area 2 mm²; Pv= 1 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
Footprint only; Ta= 298 K; Tmax = 442 KA = 300 mm²; Ta= 298 K; Tmax = 376 K
Infineon Technologies AG34
P-TO263-5-1
1 1 1
1 2 3
Footprint only6 cm² 3 cm²
P-TO263-5-1 P-TO263-5-1
a/2
a
a/2
a
FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 24.49 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 17.32 mm FR4; 80
x
80
x
1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
Reflow soldering
A
8˚max.
BA0.25
M
0.1
±0.2
10
8.5
1)
8
1)
(15)
±0.2
9.25
±0.3
1
5x0.8
±0.1
1 5
±0.1
1.27
B
0.5
±0.1
±0.3
2.7
4.7
±0.5
0.05
GND
4x1.7
±0.1
4.4
±0.1
0.1
2.4
±0.1
B
7.9
1.1
0.6
10.8
9.4 16.15 4.6
Dimensions in mm
R
thj-c
= 1.3 K/W
R
thj-a
0
Z
thj-a
600 mm
2
300 mm
2
Footprint
K/W
40
45
50
55
60
65
70
75
85 90
K/W
20
10
70
40
30
60
50
35
78.4
52.4
39
0
A
100 200 300 400 500 600mm
2
t
p
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
s
Infineon Technologies AG34
Footprint/Dimensions
PC-Board
Finite Element Method
Diagrams
P-TO263-5-1
A = 600 mm²; Ta= 298 K; Tmax = 417 K
FEM Simulation (chip area 2 mm²; Pv= 3 W; zero airflow)
Application-Boards for Rth - Measurement
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A(zero airflow)
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp(zero airflow)
A = 300 mm²; Ta= 298 K; Tmax = 455 K Footprint only; Ta= 298 K; Tmax = 533 K
Infineon Technologies AG’s sales offices worldwide –
partly represented by Siemens AG
O
A
Siemens AG Österreich
Erdberger Lände 26
A-1031 Wien
T(+43) 1-17 07-3 56 11
Fax (+43) 1-17 07-5 59 73
O
AUS
Siemens Ltd.
885 Mountain Highway
Bayswater, Victoria 3153
T(+61) 3-97 21 21 11
Fax (+61) 3-97 21 72 75
O
B
Siemens Electronic Components
Benelux
Charleroisesteenweg 116/
Chaussée de Charleroi 116
B-1060 Brussel/Bruxelles
T(+32) 2-5 36 69 05
Fax (+32) 2-5 36 28 57
Email: components@siemens.nl
O
BR
Siemens Ltda.
Semiconductores
Avenida Mutinga, 3800-Pirituba
05110-901 São Paulo-SP
T(+55) 11-39 08 25 64
Fax (+55) 11-39 08 27 28
O
CDN
Infineon Technologies Corporation
320 March Road, Suite 604
Canada, Ontario K2K 2E2
T(+1) 6 13-5 91 63 86
Fax (+1) 6 13-5 91 63 89
O
CH
Siemens Schweiz AG
Bauelemente
Freilagerstrasse 40
CH-8047 Zürich
T(+41) 1-4 95 30 65
Fax (+41) 1-4 95 50 50
O
D
Infineon Technologies AG
Völklinger Str. 2
D-40219 Düsseldorf
T(+49) 2 11-3 99 29 30
Fax (+49) 2 11-3 99 14 81
Infineon Technologies AG
Werner-von-Siemens-Platz 1
D-30880 Laatzen (Hannover)
T(+49) 5 11-8 77 22 22
Fax (+49) 5 11-8 77 15 20
Infineon Technologies AG
Von-der-Tann-Straße 30
D-90439 Nürnberg
T(+49) 9 11-6 54 76 99
Fax (+49) 9 11-6 54 76 24
Infineon Technologies AG
Weissacher Straße 11
D-70499 Stuttgart
T(+49) 7 11-137 33 14
Fax (+49) 7 11-137 24 48
O
D
Infineon Technologies AG
Halbleiter Distribution
Richard-Strauss-Straße 76
D-81679 München
T(+49) 89-92 21 40 86
Fax (+49) 89-92 21 20 71
O
DK
Siemens A/S
Borupvang 3
DK-2750 Ballerup
T(+45) 44 77-44 77
Fax (+45) 44 77-40 17
O
E
Siemens S.A.
Dpto. Componentes
Ronda de Europa, 5
E-28760 Tres Cantos-Madrid
T(+34) 91-5 14 71 51
Fax (+34) 91-5 14 70 13
O
F
Infineon Technologies France,
39/47, Bd. Ornano
F-93527 Saint-Denis CEDEX 2
T(+33) 1-49 22 31 00
Fax (+33) 1-49 22 28 01
O
FIN
Siemens Components
Scandinavia
P.O.Box 60
FIN-02601 Espoo (Helsinki)
T(+3 58) 10-5 11 51 51
Fax (+3 58) 10-5 11 24 95
Email:
scs@components.siemens.se
O
GB
Infineon Technologies
Siemens House
Oldbury
GB-Bracknell, Berkshire
RG 12 8FZ
T(+44) 13 44-39 66 18
Fax (+44) 13 44-39 66 32
O
H
Simacomp Kft.
Lajos u. 103
H-1036 Budapest
T(+36) 1-4 57 16 90
Fax (+36) 1-4 57 16 92
O
HK
Infineon Technologies
Hong Kong Ltd.
Suite 302, Level 3,
Festival Walk,
80 Tat Chee Avenue,
Yam Yat Tsuen,
Kowloon Tong
Hong Kong
T(+8 52) 28 32 05 00
Fax (+8 52) 28 27 97 62
O
I
Siemens S.p.A.
Semiconductor Sales
Via Piero e Alberto Pirelli, 10
I-20126 Milano
T(+39) 02-66 76 -1
Fax (+39) 02-66 76 43 95
O
IND
Siemens Ltd.
Components Division
No. 84 Keonics Electronic City
Hosur Road
Bangalore 561 229
T(+91) 80-8 52 11 22
Fax (+91) 80-8 52 11 80
Siemens Ltd.
CMP Div, 5th Floor
4A Ring Road, IP Estate
New Delhi 110 002
T(+91) 11-3 31 99 12
Fax (+91) 11-3 31 96 04
Siemens Ltd.
CMP Div, 4th Floor
130, Pandurang Budhkar Marg,
Worli
Mumbai 400 018
T(+91) 22-4 96 21 99
Fax (+91) 22-4 96 22 01
O
IRL
Siemens Ltd.
Electronic Components Division
8, Raglan Road
IRL-Dublin 4
T(+3 53) 1-2 16 23 42
Fax (+3 53) 1-2 16 23 49
O
IL
Nisko Ltd.
2A,Habarzel St.
P.O. Box 58151
61580 Tel Aviv – Isreal
T(+9 72) 3-7 65 73 00
Fax (+9 72) 3-7 65 73 33
O
J
Siemens Components K.K.
Talanawa Park Tower 12F & 17F
3-20-14, Higashi-Gotanda,
Shinagawa-ku
Tokyo
T(+81) 3-54 49 64 11
Fax (+81) 3-54 49 64 01
O
MAL
Infineon Technologies AG
Sdn Bhd
Bayan Lepas Free Industrial Zone 1
11900 Penang
T(+60) 4-6 44 99 75
Fax (+60) 4-6 41 48 72
O
N
Siemens Components
Scandinavia
Østre Aker vei 24
Postboks 10, Veitvet
N-0518 Oslo
T(+47) 22-63 30 00
Fax (+47) 22-68 49 13
Email:
scs@components.siemens.se
O
NL
Siemens Electronic Components
Benelux
Postbus 16068
NL-2500 BB Den Haag
T(+31) 70-3 33 20 65
Fax (+31) 70-3 33 28 15
Email: components@siemens.nl
O
NZ
Siemens Auckland
300 Great South Road
Greenland
Auckland
T(+64) 9-5 20 30 33
Fax (+64) 9-5 20 15 56
O
P
Siemens S.A.
an Componentes Electronicos
R. Irmaos Siemens, 1
Alfragide
P-2720-093 Amadora
T(+351) 1-4 17 85 90
Fax (+351) 1-4 17 80 83
O
PK
Siemens Pakistan Engineering
Co.Ltd.
PO Box 1129, Islamabad 44000
23 West Jinnah Ave
Islamabad
T(+92) 51-21 22 00
Fax (+92) 51-21 16 10
O
PL
Siemens SP. z.o.o.
ul. Zupnicza 11
PL-03-821 Warszawa
T(+48) 22-8 70 91 50
Fax (+48) 22-8 70 91 59
O
ROK
Siemens Ltd.
Asia Tower, 10th Floor
726 Yeoksam-dong, Kang-nam Ku
CPO Box 3001
Seoul 135-080
T(+82) 2-5 27 77 00
Fax (+82) 2-5 27 77 79
O
RUS
INTECH electronics
ul. Smolnaya, 24/1203
RUS-125 445 Moskva
T(+7) 0 95-4 51 97 37
Fax (+7) 0 95-4 51 86 08
O
S
Siemens Components Scandinavia
Österögatan 1, Box 46
S-16493 Kista
T (+46) 8-7 03 35 00
Fax (+46) 8-7 03 35 01
Email:
scs@components.siemens.se
O
RC
Infineon Technologies
Asia Pacific Pte. Ltd.
Taiwan Branch
10F, No. 136 Nan King East Road
Section 23, Taipei
T(+8 86) 2-27 73 66 06
Fax (+8 86) 2-27 71 20 76
O
SGP
Infineon Technologies Asia
Pacific, Pte. Ltd.
168 Kallang Way
Singapore 349 253
T(+65) 8 40 06 10
Fax (+65) 7 42 62 39
O
USA
Infineon Technologies
Corporation
1730 North First Street
San Jose, CA 95112
T(+1) 4 08-5 01 60 00
Fax (+1) 4 08-5 01 24 24
Siemens Components, Inc.
Optoelectronics Division
19000 Homestead Road
Cupertino, CA 95014
T(+1) 4 08-2 57 79 10
Fax (+1) 4 08-7 25 34 39
Siemens Components, Inc.
Special Products Division
186 Wood Avenue South
Iselin, NJ 08830-2770
T(+1) 7 32-9 06 43 00
Fax (+1) 7 32-6 32 28 30
O
VRC
Infineon Technologies
Hong Kong Ltd.
Beijing Office
Room 2106, Building A
Vantone New World Plaza
No. 2 Fu Cheng Men Wai Da Jie
100037 Beijing
T(+86) 10-68 57 90 -06, -07
Fax (+86) 10-68 57 90 08
Infineon Technologies
Hong Kong Ltd.
Chengdu Office
Room 14J1, Jinyang Mansion
58 Tidu Street
Chengdu,
Sichuan Province 610 016
T(+86) 28-6 61 54 46 / 79 51
Fax (+86) 28-6 61 01 59
Infineon Technologies
Hong Kong Ltd.
Shanghai Office
Room 1101, Lucky Target Square
No. 500 Chengdu Road North
Shanghai 200003
T(+86) 21-63 61 26 18/19
Fax (+86) 21-63 61 11 67
Infineon Technologies
Hong Kong Ltd.
Shenzhen Office
Room 1502, Block A
Tian An International Building
Renim South Road
Shenzhen 518 005
T(+86) 7 55-2 28 91 04
Fax (+86) 7 55-2 28 02 17
O
ZA
Siemens Ltd.
Components Division
P.O.B. 3438
Halfway House 1685
T(+27) 11-6 52 -27 02
Fax (+27) 11-6 52 20 42
06.10.99
Internet-address: http://www.infineon.com
Qualität hat für uns eine
umfassende Bedeutung.
Wir wollen allen Ihren
Ansprüchen in der
bestmöglichen Weise
gerecht werden. Es geht
uns also nicht nur um die
Produktqualität – unsere
Anstrengungen
gelten gleichermaßen der
Lieferqualität und Logistik,
dem Service und Support
sowie allen sonstigen
Beratungs- und Betreuungs-
leistungen.
Dazu gehört eine bestimmte
Geisteshaltung unserer
Mitarbeiter. Total Quality
im Denken und Handeln
gegenüber Kollegen,
Lieferanten und Ihnen,
unserem Kunden. Unsere
Leitlinie ist, jede Aufgabe
mit „Null Fehlern“ zu
lösen – in offener
Sichtweise auch über den
eigenen Arbeitsplatz
hinaus und uns ständig
zu verbessern.
Unternehmensweit
orientieren wir uns dabei
auch an „top“ (Time
Optimized Processes), um
Ihnen durch größere
Schnelligkeit den
entscheidenden
Wettbewerbsvorsprung
zu verschaffen.
Geben Sie uns die Chance,
hohe Leistung durch
umfassende Qualität zu
beweisen.
Wir werden Sie überzeugen.
Quality takes on an all-
encompassing significance
at Semiconductor Group.
For us it means living up
to each and every one of
your demands in the best
possible way. So we are
not only concerned with
product quality. We direct
our efforts equally at
quality of supply and
logistics, service and
support, as well as all the
other ways in which we
advise and attend to you.
Part of this is the very
special attitude of our
staff. Total Quality in
thought and deed,
towards co-workers,
suppliers and you, our
customer. Our guideline is
“do everything with zero
defects”, in an open
manner that is
demonstrated beyond
your immediate
workplace, and to
constantly improve.
Throughout the
corporation we also think
in terms of
Time Optimized Processes
(top), greater speed on
our part to give you that
decisive competitive edge.
Give us the chance to
prove the best of
performance through the
best of quality – you will
be convinced.
Total Quality Management
Published by Infineon Technologies AG
Ordering No. B112-H7482-G1-X-7600
Printed in Germany
TB 01005. NB