ABB Semiconductors AG reserves the right to change specifications without notice.
VSM = 6500 V
ITAVM = 1405 A
ITRMS = 2205 A
ITSM = 22000 A
VT0 =1.20V
rT= 0.600 m
Bi-Directional Control Thyristor
5STB 13N6500
Doc. No. 5SYA1035-03 Sep. 01
Two thyristors integrated into one wafer
Patented free-floating silicon technology
Designed for traction, energy and industrial applications
Optimum power handling capability
Interdigitated amplifying gate.
The electrical and thermal data are valid for one thyristor half of the device.
Blocking
Part Number 5STB 13N6500 5STB 13N6200 5STB 13N5800 Conditions
VSM 6500 V 6200 V 5800 V f = 5 Hz, tp = 10ms
VRM 5600 V 5300 V 4900 V f = 50 Hz,tp = 10ms
ISM 400 mA VSM
IRM 400 mA VRM Tj = 125°C
dV/dtcrit 2000 V/µs @ Exp. to 0.67xVSM
VRM is equal to VSM up to Tj = 110°C
Mechanical data
FMMounting force nom. 90 kN
min. 81 kN
max. 108 kN
aAcceleration
Device unclamped
Device clamped
50
100
m/s2
m/s2
mWeight 2.9kg
DSSurface creepage distance 53 mm
DaAir strike distance 22 mm
5STB 13N6500
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1035-03 Sep. 01 page 2 of 6
On-state
ITAVM Max. average on-state
t
1405 A Half sine wave, TC = 70°C
ITRMS Max. RMS on-state current 2205 A
ITSM Max. peak non-repetitive 22000 A tp = 10 ms T
j
= 125°C
surge current 24000 A tp = 8.3 ms After surge:
I2t Limiting load integral 2420 kA2stp= 10msV
D = VR = 0V
2390 kA2stp= 8.3ms
VTOn-state voltage 2.12 V IT= 1500 A
VT0 Threshold voltage 1.20 V IT= 670 - 2000 A T
j
= 125°C
rTSlope resistance 0.600 m
IHHolding current 100-300 mA Tj= 25°C
50-175 mA Tj= 125°C
ILLatching current 100-500 mA Tj= 25°C
50-300 mA Tj= 125°C
Switching
di/dtcrit Critical rate of rise of on-state 250 A/µs Cont. f = 50 Hz VD 0.67VDRM , Tj = 125°C
current 500 A/µs ITRM = 2000 A60 sec.
f = 50Hz IFG = 2 A, tr = 0.5 µs
tdDelay time 3.0 µs VD = 0.4VDRM IFG = 2 A, tr = 0.5 µs
tqTurn-off time 800 µs VD 0.67VDRM ITRM = 2000 A, Tj = 125°C
dvD/dt = 20V/µs VR > 200 V, diT/dt = -1.5 A/µs
Qrr Recovery charge min 2400 µAs
max 3800 µAs
Triggering
VGT Gate trigger voltage 2.6 V Tj = 25°C
IGT Gate trigger current 400 mA Tj = 25°C
VGD Gate non-trigger voltage 0.3 V VD = 0.4VRM Tj = 125°C
IGD Gate non-trigger current 10 mA VD = 0.4VRM Tj = 125°C
VFGM Peak forward gate voltage 12 V
IFGM Peak forward gate current 10 A
VRGM Peak reverse gate voltage 10 V
PGMaximum gate power loss 3 W
5STB 13N6500
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1035-03 Sep. 01 page 3 of 6
Thermal
TjOperating junction temperature range -40125 °C
Tstg Storage temperature range -40150 °C
RthJC Thermal resistance 22.8 K/kW Anode side cooled
junction to case 22.8 K/kW Cathode side cooled
11.4 K/kW Double side cooled
RthCH Thermal resistance case to 4 K/kW Single side cooled
heat sink 2 K/kW Double side cooled
Analytical function for transient thermal
impedance:
)e-(1R = (t)Z
n
1i
t/-
ithJC i
å
=
τ
i1234
Ri(K/kW) 6.77 2.51 1.34 0.78
τi(s) 0.8651 0.1558 0.0212 0.0075
0.001 0.010 0.100 1.000 10.00
0
t[s]
0
5
10
15
Z
thJC
[K/kW]
BN1
180° sine: add 1 K/kW
180° rectangular: add 1 K/kW
120° rectangular: add 1K/kW
60° rectangular:
add
2
K/kW
F
m
=81..108 kN
Double-side cooling
Fig. 1 Transient thermal impedance junction to case.
On-state characteristic model:
ITDiTCiTBAVT ++++= )1ln(
Valid for iT = 200 – 2000 A
AB CD
1.328 0.000257 -0.092 0.028
Fig. 2 On-state characteristics. Fig. 3 On-state characteristics.
5STB 13N6500
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1035-03 Sep. 01 page 4 of 6
0 500 1000 1500 2000 2500
I
T
A
V
(
A
)
70
75
80
85
90
95
100
105
110
115
120
125
130
T
case
(
°
C
)
DC
180°
rectangular
180°
sine
120°
rectangular
5STB
13N6500
Double-sided
cooling
Fig. 4 On-state power dissipation vs. mean on-
state current. Turn - on losses excluded.
Fig. 5 Max. permissible case temperature vs.
mean on-state current.
Fig. 6 Surge on-state current vs. pulse length.
Half-sine wave.
Fig. 7 Surge on-state current vs. number of
pulses. Half-sine wave, 10 ms, 50Hz.
5STB 13N6500
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1035-03 Sep. 01 page 5 of 6
Fig. 8 Gate trigger characteristics. Fig. 9 Max. peak gate power loss.
Fig. 10 Recovery charge vs. decay rate of on-
state current.
Fig. 11 Peak reverse recovery current vs. decay
rate of on-state current.
Turn - off time, typical parameter relationship.
0 4 8 121620242832
1.0
1.1
1.2
1.3
f
(
-di
dt
)
2T
di
T
/
dt (
A
/
µs)
-
5
S
TB 1
3
N
6
5
0
0
Fig. 12 tq/tq1 = f1(Tj) Fig. 13 tq/tq1 = f2(-diT/dt) Fig. 14 tq/tq1 = f3(dv/dt)
tq = tq1 f1(Tj) f2(-diT/dt) f3(dv/dt) tq1 :at normalized values (see page 2)
tq : at varying conditions
5STB 13N6500
ABB Semiconductors AG reserves the right to change specifications without notice.
ABB Semiconductors AG Doc. No. 5SYA1035-03 Sep. 01
Fabrikstrasse 3
CH-5600 Lenzburg, Switzerland
Telephone +41 (0)62 888 6419
Fax +41 (0)62 888 6306
Email abbsem@ch.abb.com
Internet www.abbsem.com
Turn-on and Turn-off losses
0123456789101112
I
T
(kA)
0
1
2
3
4
5
6
W
on
(
Ws
/
pulse
)
tp
=
1
ms
tp
=
2
ms
tp
=
5
ms
tp
=
10
ms
5
S
TB 1
3
N
6
5
0
0
0123456789101112
I
T
(kA)
0
1
2
3
4
5
W
on
(
W
s
/
p
u
lse)
di/dt
=
10
A/µs
di/dt
=
5
A/µs
di/dt
=
2
A/µs
di/dt
=
1
A/µs
5STB
13N6500
Fig. 15 Won = f(IT, tP), Tj = 125°C.
Half sinusoidal waves.
Fig. 16 Won = f(IT, di/dt), Tj = 125 °C.
Rectangular waves.
Fig. 17 Woff = f(V0, IT), Tj = 125 °C.
Half sinusoidal waves. tP = 10 ms.
Fig. 18 Woff = f(V0,di/dt), Tj = 125 °C.
Rectangular waves.