Standard Power MOSFETs. File Number 1566 IRF130, IRF131, IRF132, IRF133 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode N-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors p 12A and 14A, 60V-100V 'os(On) = 0.18 Q and 0.25 9 Features: 6 8 SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics 3 @ High input impedance o2cs-a3741 @ Majority carrier device TERMINAL DIAGRAM The IRF130, IRF131, IRF132 and IRF133 are n-channel enhancement-mode silicon-gate power field- TERMINAL DESIGNATION effect transistors designed for applications such as switch- ORAIN ing regulators, switching converters, motor drivers, relay SOURCE (FLANGE) drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel GATE 92cs-37801 package. JEDEC TO-204AA Absolute Maximum Ratings Parameter IRF130 IRF131 IRF 132 IRF133 Units Vos Drain - Source Voitage 100 60 100 60 Vv Vpgr Drain - Gate Voltage (Rgs = 20KQ) D 100 60 100 60 v \p @Te = 25C Continuous Drain Current, 14 4 412 12 A Ip @ Te = 100C Continuous Drain Current: 9.0 9.0 8.0 8.0 A tom Pulsed Drain Current @ 56 56 48 48 A Vos -___ Gate - Source Voltage 20 Vv Pp @Tc = 25C Max. Power Dissipation 75 (See Fig. 14) w Linear Derating Factor 0.6 (See Fig. 14) wee um Inductive Current, Clamped (See Fig. 15 and 16} = 100nH A 56 i 56 48 j 48 | Tg Sean Santwarteare Henge ~55 10 150 c Lead Temperature 300 (0.063 in. (t.6mm) from case for 10s) C 3-59Standard Power MOSFETs IRF130, IRF131, IRF132, IRF133 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BYpgg_ Drain - Source Breakdown Voltage IRF130 400 _ _ v Veg = OV IRF 132 IRF +31 _ on ine1a3 | 6 - - v Ip = 2504A Va@sith) Gate Threshold Voltage ALL 2.0 > 4.0 Vv Vos = Ves. 'p = 250A Igsg _ Gate-Source Leakage Forward ALL - = 100 nA Ves = 20V Igss_ _- Gate-Source Leakage Reverse ALL - |-100 oA Veg = -20V {poss Zero Gate Voltage Drain Current ALL - _ 250 nA Vps = Max. Rating. Vgg = OV [1000 ya Vog = Max. Rating x 0.8, Vgg = OV. Tc = 125C Ipfon) _ On-State Drain Current @ IRF130 14 A IRFI31 _ 1 Vps? 'pton) * Rosiom) max.: Ves * 10V meis2 | a, | | A IRF133 Rogion) Static Drain-Source On-State (RF130 Resistance (RF13t ~ 0.14 | 0.18 a v tov. 8.0A (RE132 . 0.20 | 0.28 a GS = ID = IRF133 : . ts Forward Transconductance @) ALL 4.0 5.5 = stl Vos >! pion * Fosiont max. 'p = 8-04 Ciss Input Capacitance ALL _ 600 _ pF Vag = OV, Vpg = 25V.f = 1.0MHz Coss Output Capacitance ALL = 300 = pF See Fig. 10 Cres Reverse Transfer Capacitance ALL = 100 pF tg{on) _Turn-On Delay Time ALL - = 30 ns Voo = 36V, lp = 8.0A,Z, = 150 ty Rise Time ALL ~ = 75 ns See Fig. 17 tdloft) Turn-Off Dalay Time ALL - - 40 ns (MOSFET switching times are essentially tf Fail Time ALL _ _ 45 ns independent of operating temperature.) a, Totai Gate Charge Veg = 10V, In = 18A, Vine = 0.8 Max. Rating. 9 _ Gs Bb DS. {Gate-Source Plus Gate-Drain) aul 18 30 ne See Fig. 18 for test circuit. (Gate charge is essentially Ops Gate-Source Charge ALL _ 9.0 14 nc independent of operating temperature.) Oga Gate-Drain (''Milter) Charge ALL ~ 3.0 14 nc Lp Internal Drain Inductance ALL - 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. o Ls Internal Source Inductance ALL - frzsf} - nH Measured from the to source pin, 6 mm {0.25 in.) from header G us and source banding pad. s Thermal Resistance Rinic _ Junction-to-Case ALL - = 1.67 | >cw hs _Case-to-Sink ALL = 0.1 ~ &Ciw Mounting surface flat, smooth, and greased. Rinsa Junction-to-Ambient ALL = _ 30 C/W Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRF130 _ _ 14 A Modified MOSFET symbol (Body Diode} IRF131 showing the integral IRF132 reverse P-N junction rectifier. Do piss} 7 | 7 | A igm Pulse Source Current iRF130 [ _ | 66 A 6 (Body Diode) @ IRF131 IRF 132 s inFt33 | ~ | ~ | 48 a Vsp Diode Forward Voltage wae130 [ ~ | os Vv Te = 28C, Ig = 14A, Vag = OV IRF132 = 28 = = iariaa | ~ | 23 v Te = 28C. Ig = 12A, Veg = OV try Reverse Recovery Time ALL - 360 - ns Ty = 180C Tp = 14A, dip/dt = 100A/us Qrar Reverse Recovered Charge ALL = 24 ~ ac Ty = 150C, lp = 14A, digidt = TODA! ys. ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. OTy = 25C to 150C. @Pulse Test: Pulse width < 300us, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal impedance Curve tFig. 5).Standard Power MOSFETs IRF130, IRF131, IRF132, IRF133 ws PULSE 80 ys PULSE Vos > 'nian) * 8oston) max. tp, DRAIN CURRENT (AMPERES} Ip. DRAIN CURRENT (AMPERES) ae Ty= 250C Ty* 0 40 20 30 40 50 0 2 4 6 a 10 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vgs, GATE-TO-SQUACE VOLTAGE (VO.TS} Fig. 1 Typicat Output Characteristics Fig. 2 Typical Transfer Characteristics 80 us PULSE TEST Ip. DRAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) Te = 25C Ty = 180C MAX. Rthuc = 1.67C/W SINGLE PULSE IRF131, 3 IRF 130, 2 0 04 08 12 16 26 102 5 1 20 so 100 200 = 500 Vos. DRAIN.TO SOURCE VOLTAGE (VOLTS) Vg. GRAIN-TO SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area o> oy 2 es a) 2 e S a THERMAL IMPEDANCE (PER UNIT} 1, DUTY FACTOR, 0 = THER! (MPEDANI ERMAL (MPEDANCE) 2. PER UNIT BASE = Runge * 1.67 DEG. C/W. 3. Tym - Te = Pom Zthactt). Zerscltl/Rypyc. NORMALIZED EFFECTIVE TRANSIENT oS 92 5 4 2 5 wd 2 5 w2 2 5 wl 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-61Standard Power MOSFETs IRF130, IRF131, IRF132, IRF133 $ Vos> 'pton} * Aoston) max. 60 us PULSE 0 $ 10 it 20 a tp, GRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1.28 118 0.95 0.85 BVogs, DAAIN-TO-SQUACE BREAKDOWN VOLTAGE (NORMALIZEO} 075 -40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE {9C) Fig. 8 Breakdown Voltage Vs. Temperature 2000 Vos* =1 1600 Cigg = Cqs + Oya, Cog SHORTED Crs * Cys 7: + < Com Cas gE wa 1200 = Cee + Oya 8 2 < 5 3S < = 800 o 9 0 20 30 a0 50 Vos. DRAIN-TO-SOUACE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 3-62 Ty = 150C Ign. REVERSE DRAIN CURRENT (AMPERES) 2 3 4 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage > o O6 Rosion). ORAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) -40 Q 0 80 120 Ty, JUNCTION TEMPERATURE {9C) Fig. 9 Normalized On-Resistance Vs. Temperature & Vag. GATE-TO-SOURCE VOLTAGE (VOLTS) wn 3 Ip= FOR TEST CIRCUIT SEE FIGURE a 8 16 24 32 a Qy. TOTAL GATE CHARGE tnC} Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage06 | | rosie MEASURED WITH CURRENT PULSE OF 23s BURATION. INITIAL Ty = 28C, (HEATING 0.5 F- EFFECT OF 2.0 ss PULSE IS MINIMAL} 04 Vgg = lov 03 02 7 Roston): ORAIN-TO-SOURCE ON RESISTANCE (OHMS) ee Lee 01 Vgg * 20V 9 10 20 0 40 50 60 Ip. ORAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 80 70 60 60 40 w Pr, POWER DISSIPATION (WATTS} 20 w 0 20 40 60 Standard Power MOSFETs IRF130, IRF131, IRF132, IRF133 Ig, ORAIN CURRENT (AMPERES) 3 50 75 100 125 150 Tc. CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature 80 100 120 140 Tc, CASE TEMPERATURE {C} Fig. 14 Power Vs. Temperature Derating Curve VARY ty TO OBTAIN REQUIRED PEAK se me , = 0S8Vs5 FH Ve = 0.758Vp55 vera =, I 0.052 Fig. 15 Clamped Inductive Test Circuit Vop = 36V aa PRE = 1kHz Vo tp Vas TO SCOPE Fig. 17 Switching Time Test Circuit v ty bs 4 a Soh Pd eg < \------ Fig. 16 Clamped Inductive Waveforms o *Yos ISOLATED SUPPLY) CURRENT REGULATOR SAME TYPE 12 AS OUT Tv patreny | 2H 1 CURRENT = SHUNT CURRENT SHUNT Fig. 18 Gate Charge Test Circuit 3-63